search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 91(1), 2017, p. 146–161 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.131


New Cretaceous lungfishes (Dipnoi, Ceratodontidae) from western North America


Joseph A. Frederickson,1,2 and Richard L. Cifelli1,2


1SamNoble OklahomaMuseumof Natural History, 2401 ChautauquaAvenue, Norman,Oklahoma 73072,USA ⟨joseph.a.frederickson-1@ou.edu⟩ ⟨RLC@ou.edu⟩ 2Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, USA ⟨joseph.a.frederickson-1@ou.edu⟩ ⟨RLC@ou.edu


Abstract.—Ceratodontid lungfishes are generally rare, poorly represented elements of North America’sMesozoiceco- systems, with previously known maximum diversity in the Late Jurassic. Herein we describe four new species of the form genus Ceratodus, from the Cretaceous of the Western Interior, considerably expanding fossil representation of post-Triassic dipnoans in North America. To model taxonomic and morphologic diversity, we adopt a four-fold system of phenetically based species groups, named for exemplars from the Morrison Formation. Ceratodus kirklandi n. sp. (Potamoceratodus guentheri group) and C. kempae n. sp. (C. frazieri group) represent a hitherto unsampled time interval, the Valanginian. Ceratodus nirumbee n. sp. and C. molossus n. sp. extend the temporal ranges of the C. fossanovum and C. robustus groups upward to the Albian and Cenomanian, respectively. These new occurrences show that ceratodontids maintained their highest diversity from the Late Jurassic through the mid-Cretaceous (Albian–Cenomanian), an interval of ~60 Myr. The existing record suggests that some of the later (mid-Cretaceous) ceratodontids may have been tolerant of salt water; to date, there is no evidence that they aestivated. Only a few occurrences are known from horizons younger than Cenomanian. Demise of ceratodontids appears to be part of a broader pattern of turnover that occurred at the Cenomanian-Turonian boundary in North America.


Introduction


Though now restricted to southern landmasses, lungfishes were present in North America for much of the Paleozoic and Mesozoic, dating back to the Devonian Period. Early repre- sentatives display broad diversity in skull and dental morpho- logy, suggesting differences in trophic adaptations and representation of multiple clades (e.g., Long, 2010; Pardo et al., 2010). Post-Triassic dipnoans of North America, however, are represented almost entirely by small samples (or unique occur- rences) of isolated tooth plates—a fossil record that is poorly suited to detailed phylogenetic or paleobiologic understanding, and that is therefore permissive of contrasting perspectives. For example, Martin (1982) proposed family-level distinction of the two major morphs (flat and sharp-crested, referred to Ceratodontidae and Ptychoceratodontidae, respectively) seen among North American Jurassic–Cretaceous varieties. Alternate hypotheses of relationships have been suggested, however (e.g., Kirkland, 1987, 1998), and in view of the fact that the tooth plates are broadly similar in gross anatomical and histological features, they are generally referred to Ceratodus (Agassiz, 1838; see diagnosis in Kemp, 1993), which has long been regarded as a form genus (Schultze, 1981; Kirkland, 1987). That this fossil record imperfectly reflects taxonomic diversity is illustrated by cranial remains recently described for one species (named Ceratodus guentheri by Marsh, 1878; and compared favorably to Ptychoceratodus by Martin, 1982 and some


subsequent workers) from the Morrison Formation, which is distinctive enough to warrant placement in a separate genus, Potamoceratodus (Pardo et al., 2010). On the other hand, tooth plates of the closest living species, Neoceratodus forsteri, are sufficiently variable (particularly according to growth stage) that fossils dating as far back as the Early Cretaceous are attributable to it (Kemp and Molnar, 1981; see also Kemp, 1997). The opposing issues of general morphologic conservatism and intraspecific variability pose challenges to interpreting a fossil record that consists mainly of rare, widely scattered occurrences of isolated tooth plates. Yet the record of North American Jurassic–Cretaceous


lungfish is informative in spite of its imperfection. Recognizable species-level distinctions can often be made between isolated specimens or small samples of Ceratodus tooth plates (see Kemp, 1993 and references therein; Kirkland, 1987, 1998). Moreover, the contrasting morphology between the major types of tooth plates (flat versus high-crested) suggests diversity in dietary preference. Species of Ceratodus (and Potamoceratodus) are inferred to have been faunivorous to omnivorous; low-crowned, flat tooth plates are interpreted to reflect adaptation for durophagy, suggesting more reliance on mollusks and, perhaps, vertebrates (Kirkland, 1987; Bakker, 2009; Shimada and Kirkland, 2011). It is also noteworthy that some of the flat-crowned (and presumably durophagous) taxa were the largest fishes of their respective communities; one unnamed species attained an estimated length


146


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208