search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LoDuca and Tetreault—Paleobiology of a new Silurian macroalga


9


Table 2. Morphometric data and modeled values of cytoplasm volume (C), reproductive volume (R), and C/R for a single reproductive whorl of three species of extant dasycladalean algae: (1) Dasycladus vermicularis, (2) Neomeris dumetosa, and (3) Cymopolia vanbosseae. Morphometric measurements obtained from images in Berger and Kaever (1992, figs. 3.38, 3.45, 3.7) and Berger (2006, fig. 82), and from table 9 in Maksoud et al. (2014). All morphometric measurements in millimeters. C and C/R values for Cymopolia vanbosseae include C from an associated sterile whorl (see text). l = length of lateral segment; r = radius of lateral segment; N = number of lateral segments per whorl; g = gametophore radius; gN = number of gametophores per whorl.


Species 1


1 2 2 3


Source fig. 3.7


fig. 3.38 0.38 0.025 30 0.25 0.018 60 table 9


fig. 82 fig. 3.45 0.21 0.023 12 0.33 0.017 96 0.36 0.020 28 0.22 0.015 56


(choristospore hypothesis; Fig. 6.2), as a first pass, R was modeled as total node volume within a whorl, with nodes approximated as spheres, and C was modeled as cytoplasm volume exclusively for the first-order lateral segments of the same whorl. Results indicate a C/R value of 3.5 for a whorl with values of lateral length, lateral diameter, and node diameter equivalent to those of the holotype, ROM 63795 (Fig. 3.3) (model 1 in Table 3). For five other specimens modeled in this way, C/R values are similar, ranging from a low of 3.5 to a high of 4.7 (avg. 3.95) (Table 3). Note that although modeling of C and R was conducted using 12 laterals per whorl, the number of laterals per whorl is irrelevant from the perspective of the C/R value in this case, because node number and first-order lateral number per whorl are equivalent. Thus, the fact that C is substantially greater than R for Wiartonella when modeled in this way is entirely a consequence of the node being quite small relative to the preceding cylindrical portion of the lateral, the latter being many times longer and over half as wide as the node in all cases (Table 1). Considered more holistically, the differ- ence between C and R is even greater, because C must also include cytoplasm volume from the associated second-order lateral segments (two for each first-order segment). When this factor is included, the resulting cytoplasm volume calculated for the various specimens is roughly an order of magnitude greater than the associated reproductive volume (model 2 in Table 3). Such a relationship casts considerable doubt on the possibility of homology between gametophores and the nodes of Wiartonella, because it would entail that most of the thallus cytoplasm (i.e., >90%) was not used for reproduction. Interestingly, modeling of the same nature, but treating


To evaluate the nodes of Wiartonella as gametophores l1 r1 N1 l2 r2 N2 l3 r3


0.046 0.050 0.040


N3 ggN


0.80 0.075 12 0.50 0.050 48 0.25 0.025 192 0.14 12 0.85 0.075 10 0.50 0.065 40 0.25 0.033 160 0.15 10 – – –


60 0.06 30 56 0.06 28 96 0.11 12


C mm3 Rmm3 0.170


0.186 0.037 0.033 0.086


0.124 0.128 0.021 0.021 0.050


C/R 1.4


1.5 1.8 1.6 1.7


Table 3. Modeled values of cytoplasm volume (C), reproductive volume (R), and C/R for specimens of Wiartonella nodifera using morphometric data from Table 1. Values pertain to a single fertile whorl with 12 laterals per whorl. Model parameters as follows: (1) R calculated for node only, C excludes second-order lateral segments; (2) R calculated for node only, C includes second-order lateral segments; (3) R calculated for entire first-order lateral segment, including node, C includes second-order lateral segments. See text for additional details.


Specimen


ROM 63792 ROM 63795 ROM 63796.1 ROM 63800 ROM 63803 ROM 63804 ROM 63792 ROM 63795 ROM 63800 ROM 63804 ROM 63792 ROM 63795 ROM 63800 ROM 63804


Model 1


1 1 1 1 1 2 2 2 2 3 3 3 3


C mm3 0.0274


0.0217 0.0324 0.0175 0.0297 0.0160 0.0787 0.0649 0.0511 0.0525 0.0787 0.0649 0.0511 0.0525


Rmm3 0.0063


0.0063 0.0084 0.0046 0.0063 0.0046 0.0063 0.0063 0.0046 0.0046 0.0501 0.0376 0.0281 0.0258


C/R 4.3


3.5 3.9 3.8 4.7 3.5


12.5 10.3 11.1 11.4 1.6 1.7 1.8 2.0


reproduction is 1.8. Thus, results of biophysical modeling provide no clear distinction between cladospore and endospore


the entire first-order lateral segment of Wiartonella as a reproductive structure (cladospore hypothesis; Fig. 6.3), yields C/R values comparable to those calculated herein for extant taxa. For example, when R is modeled in this way for the holotype, the C/R value is 1.7, where C includes cytoplasm from the second-order lateral segments, and for the other specimens, C/R values modeled in the same way fall within a narrow range between 1.6 and 2.0 (model 3 in Table 3). Such an outcome provides strong support for the cladospore hypothesis. Nonetheless, cladospore reproduction for Wiartonella cannot be definitively established. Apart from lacking evidence of reproductive cysts (to mark the location of gamete containment), uncertainty arises because modeling indicates C/R values for endospore reproduction (where the entire main axis interior serves as R and C is determined by total thallus cytoplasm volume) not much different from those for cladospore reproduction. For example, for the holotype, the modeled C/R value for endospore


reproduction for Wiartonella. Beyond the distinctive form of the first-order laterals, however, the ontogeny of Wiartonella provides additional support for the cladospore hypothesis, because late in thallus ontogeny the second-order lateral segments were shed but the first-order laterals remained attached. It is also notable in this regard that a few main axes have been found with few or no first- order laterals (Fig. 2.11, 2.12). This suggests that these, too, were eventually shed, during a separate and later shedding event. Such a fate is also known for the reproductive structures of some living dasycladalean taxa, perhaps to aid in dispersal of the gameteswhile still in a protected state.


Evolutionary significance


Regarded as either endospore or cladospore, Wiartonella is accommodated within the family Triploporellaceae, which comprises euspondyl taxa with either endospore or cladospore reproduction (LoDuca, 1997; Granier et al., 2012). If the euspondyl condition evolved only once in the evolutionary history of Dasycladales, which seems a reasonable proposition given the available evidence, then all euspondyl taxa comprise a single clade and the extinct Triploporellaceae is paraphyletic to extant Dasycladaceae and Polyphysaceae (Kenrick and Li, 1998; LoDuca et al., 2003). Within the Triploporellaceae, the lack of a cortex and the presence of two orders of laterals indicate placement within the tribe Triploporelleae, and the inflated nature of the first-order


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208