search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
156


Journal of Paleontology 91(1):146–161


large, robust-plated ceratodontid, most similar in appearance to KUVP 16262 (see Schultze, 1981) from the Kiowa Shale. USNM 508543 is one of only two described Cretaceous dipnoan fossils from eastern North America, and the only one from the Early Cretaceous. Thurmond (1974) reported a sharp-crested species of


Ceratodus in the Butler Farm local fauna, Paluxy Formation, Texas. He compared then-available specimens favorably to C. americanus (herein regarded as a nomen dubium) from the Morrison Formation. Kirkland (1987) regarded the Trinity species as an unnamed relative of what he later (Kirkland, 1998) described as C. fossanovum, also from the Morrison Formation. The Trinity species was formally described as Ceratodus texanus Parris, Grandstaff, and Banks, 2014, based on eight specimens (four pterygopalatine and four prearticular tooth plates) from localities in the Twin Mountains and Paluxy formations (Aptian–Albian, see Winkler et al., 1990), north- central Texas. Parris et al. (2014) compared C. texanus favorably with both Potamoceratodus guentheri and C. fossanovum, distinguishing the species on the basis of size and differences in angles formed by major crests.


Late Cretaceous.—Non-marine vertebrates of North


America’s Late Cretaceous are incomparably better sampled than those of the Early Cretaceous (e.g., Kielan-Jaworowska et al., 2004; Weishampel et al., 2004; Benson et al., 2013). In this context, the fact that only four ceratodontids are known for the Late Cretaceous suggests a real decline in diversity of the group. (Two additional taxa from the Late Cretaceous, Cer- atodus cruciferus Cope, 1876 and C. hieroglyphus Cope, 1876, were transferred to Acipenser by Estes [1964]). Three of the four are of Cenomanian (early Late Cretaceous) age. Ceratodus molossus n. sp., a large species with flat-crowned tooth plates (described herein), is from the Cedar Mountain and Naturita formations of Utah and is a probable relative of Late Jurassic C. robustus. Ceratodus gustasoni Kirkland, 1987, somewhat smaller but also flat-crowned, also comes from the Cenomanian of Utah. The holotype,UCM54074, and paratype,UCM54073, are both left prearticular plates. Although other specimens have since been discovered (Fig. 2.14, 2.15, and SupplementalData 9), pterygopalatine plates for this species are still unknown. Fossils of juveniles have been referred to the species (Brinkman et al., 2013, fig. 10.30), but these are uninformative. Kirkland (1987) hypothesized that C. gustasoni may be closely related to C. frazieri, differing most noticeably from this species by its posteriorly expanded lingual margin. A specimen of a juvenile, identified as Ceratodus sp. indet. and recently described from a Santonian level in the Iron Springs Formation, may belong to C. gustasoni (Eaton et al., 2014). Regardless, the specimen is of interest because it and an undescribed species from Los Peyotes, Coahuila Mexico (Coniacian–Santonian) (González-Rodríguez et al., 2016) represent the geologically youngest published ceratodontids from the Western Interior. However, putative lungfish remains have also been discovered from the lower Campanian part of the Aguja Formation of Western Texas (Wick et al., 2015; personal communication, A.A. Brink, 2016). If confirmed through future study and publication, this material would significantly extend the known range of lungfish from Laramidia (the western part of North America, separated from


Appalachia by the Western Interior during much of the Late Cretaceous; Archibald, 1996). Ceratodus carteri Main, Parris, Grandstaff, and Carter,


2014 is represented by a relatively large sample, with seven known tooth pates (one pterygopalatine and the remainder prearticulars) from the Woodbine Formation (Cenomanian) of Tarrant County, Texas. The sample also includes a wide size range, presumably reflecting different ontogenetic ages. In general, this species is most similar to the tall-crested P. guentheri. Ceratodus carteri also resembles tall-crested C. texanus (as noted by Parris et al., 2014), C. nirumbee (both Early Cretaceous), and C. fossanovum (Late Jurassic), but differs in its smaller size, more obtuse C1Cp angle, and lack of a crushing platform. A right prearticular and overlying plate (NJSM 18774),


found at the Big Brook locality in Monmouth County, New Jersey, represents the geologically youngest occurrence of Ceratodontidae in North America, and is one of only two specimens from the eastern seaboard of the continent. Speci- mens from the Big Brook locality probably come from the Mount Laurel Formation and are of Campanian age (Gallagher et al., 1986; Lauginiger, 1986). NJSM 18774 is structurally indistinguishable from prearticular plates of Ceratodus frazieri from the Cloverly Formation. Parris et al. (2004) identified the Big Brook specimen as Ceratodus sp. aff. C. frazieri, commenting that it probably represents a different species owing to its occurrence.Wedo not disagree, but because there is no anatomical basis for this distinction, we simply refer the specimen to C. frazieri without issue. Just as Ceratodus is regarded as a form genus among Ceratodontidae (e.g., Schultze, 1981), so might C. frazieri well be taken as a form species within that genus.


Diversity and paleoecology.—As noted, the nature of the fossil record of post-Triassic lungfishes in North America—which consists almost entirely of rather simple tooth plates—places serious constraints on phylogenetic and paleobiologic inference. In this case, the path of reasoned commentary lies perilously


close to a chasm of fantasy. These caveats notwithstanding, we find ourselves largely in agreement with phylogenetic and ecomorphologic interpretations proposed by previous authors (Kirkland, 1987, 1998; Parris et al., 2014), although we are unconvinced that existing data support recognition of ancestor-descendant relationships. The welcome new additions to the fossil record help span temporal and geographic gaps, and add considerably to diversity of North American Mesozoic ceratodontids.Wepropose a simple model, consisting of four species groups, to serve as a framework for discussing the post-Triassic evolutionary history of dipnoans in North America. As noted by Kirkland (1987), tooth plates of North American ceratodontids span a morphological continuum, from


small, high-crested Potamoceratodus guentheri to large, flat-crowned Ceratodus robustus. Our four species groups are named for the four species from the Upper Jurassic Morrison Formation: P. guentheri, C. fossanovum, C. frazieri, and C. robustus. The categories are phenetic: we do not intend these groups as definable phylogenetic units, although in most cases a close relationship of within-group species represents a


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208