This page contains a Flash digital edition of a book.
50 CHAPTER 3


Empirical Framework and Data School Fees


To assess the effects of historical and spatial factors on school quality, we estimate the following equation in which the log of school fee represents school quality:


ln pjkt = α + x′kt–sβ1 + z′jkβ2 + εjkt, (3.1)


where ln pjkt is the log of the school fee at school j in location (subplace) k at year t; xkt–s is location factors such as local population composition and eco- nomic conditions at s years prior to t; zjk is historical factors at school j, such as the former department; and εjkt is an error term. Officially, a subplace is defined as the smallest geographic unit available from the census, by which


we can identify the location as well as its characteristics. The novel feature of this approach is that location factors are discovered from merging school data and geographic database by GIS.10


The data come from two different sources. Local characteristics are taken from the Census 2001 Community Profile Database (Statistics South Africa). This database provides distributions of socioeconomic characteristics in the 2001 census at the subplace level for the whole country. It covers, for example, education, labor force, migration, settlement types, and popula- tion group compositions.


GIS data available in school censuses can help identify in which subplace a school is located.11 The school identification codes, EMIS, enable us to merge the Census 2001 subplace data and school censuses. School fees in 2001 are captured in the Annual School Survey 2002 (National Department of Educa- tion). The information on former education departments is available in the SRN 2000 (National Department of Education).


School Quality


To answer the question of how the government can improve school quality and support the poor with spatially targeted interventions, we estimate the following school production functions:


∆yjk = γ0 + γ1 ln pjkt + γ2 ln gjkt + z′jkζ + ∆ξj (3.2) 10 In the estimation, spatial dependence is not explicitly identified in the error term, beyond


allowing clustered correlations within each subplace (robust standard errors). 11 Using the same datasets, Yamauchi and Nishiyama (2005) analyze the effect of local income distribution within a subplace on the determination of school fees in public schools therein.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150