This page contains a Flash digital edition of a book.
22 CHAPTER 2


are likely to be different between schools. As a result, for quasi-privatized and budget-constrained public schools, LERs could have wide variations in cross-section as well as time series. The appendix presents a simple model that formalizes this idea.


Empirical Specification, Identification, and Estimation In the empirical analysis, I estimate a response function of educators to learn- ers taking into account school budget condition:


Hit = [I(y* > φit)β* + I(y* < φit)γit(p)]Lit + µi + εit, (2.1)


where β* ≥ γit(p), p denotes population group, and µi is the fixed effect that reflects unobserved school- and community-specific components. I(y* > φit) means that the school is not budget constrained, while I(y* < φit) means that it is budget constrained. In the latter case, adjustment of educators is lower


than the optimal. The derivation of γit(p) is given in the appendix. Here local condition f is also represented by population group p. Since, in the analysis


using the SRN, the information on subsidies and school fees is not available, I assume the patterns according to which these two variables are determined


differ across population groups. I estimate γit(p) as a reduced-form parameter in the estimation of (2.1).


In equation (2.1), as in many cross-sectional studies, it is likely that the


number of learners is correlated with the unobserved fixed component µi, which will bias the OLS estimate of the slope. For example, in communities experiencing rapid urbanization, where teachers can easily commute from urban centers and learners can migrate to them, the numbers of learners and educators will increase simultaneously. In this case, OLS estimates are biased upwardly. Assuming that parameters do not change over the four years, after conditioning on cross-group differences, we difference them between two periods:


∆Hi∈p = Σγi(p)∆Li∈p + ∆εi, (2.2) p


where ∆ is the differencing operator. The shocks are assumed to be ex post in each period.


The parameter of interest represents the degree of liquidity constraint. As we will see in the section “Distribution Comparison,” the empirical distribu- tions of LER motivate the analysis of determinants for the observed LER gaps across population groups. However, naive comparisons of LER distributions


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150