This page contains a Flash digital edition of a book.
100 CHAPTER 5


Our approach belongs to the first group of studies, those using panel data. Owing to data constraints (explained earlier), I focus on the enrollment status of adolescents aged 14–19 in the baseline and their transitions to labor markets thereafter. Though our results in general conform to those in the literature, one difference is the finding of almost equal magnitudes of ex post effects of maternal and paternal deaths, partly as a result of difference in the age ranges used. Because of small incidences of parental deaths in a short period, it was not possible to estimate the ex ante effects.


Framework Specification and Estimation


This section describes our empirical methodology. The behavioral equation of interest to us is as follows:


y* ijt = α + xjtβ + γsit0 + δait0 + µij + εijt, (5.1) where, for individual i in household j at time t, our observable activity indi-


cator yijt = 1 (enrolled in school or engaged in housework) if latent variable y*


ijt ≥ 0 and yijt = 0 (in labor market) otherwise, xjt is a vector of household- level factors including the demographic composition of the household, sit0 is the highest grade completed in the initial period t0, ait0 is age at the initial period t0, µij is individual i’s fixed effect in household j, and εijt follows the standard normal cumulative distribution function (probit) or the logistic cumu-


lative distribution function (logit). As I discuss subsequently, I use conditional logit estimation to eliminate time-invariant factors in the analysis of dynamic activity transition.4


Although schooling level and age in the initial period are controlled for in equation (5.1), these time-invariant variables in addition to unobserved fixed effects do not contribute to the estimation of the transition equation. There- fore, in the estimations carried out next I include initial age and schooling fixed effects only when estimating the prime-age adult mortality effect in cross- sectional models to control for potential unobserved heterogeneity of labor supply behavior attributable to predetermined schooling attainment and age.5


4 Although multinomial logit estimation is also applicable in this context to capture participation in (1) school (adolescents) or housework (adult females), (2) the labor market, and (3) other activities, I decided to focus on (1) and (2) since the number of observations for (3) is very small in our sample of individuals in specific age ranges. The inclusion of observations for other activi-


ties destabilizes the parameter estimates in maximum likelihood estimation. 5 Including both initial schooling and age fixed effects indirectly controls for the effect of past grade repetitions on the labor supply.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150