This page contains a Flash digital edition of a book.
CHAPTER 2 UNDERSTANDING UTILITY NATURAL GAS


volumes of gas can create flammable atmospheres, and the large volume of gas can quickly make the area oxygen-deficient creating the hazards of low oxygen discussed earlier.


Avoid contact of exposed body surfaces with supercold gases or liquids as


they leak from the container or pipe. They can cause severe "super" frostbite injuries. Direct contact with liquid natural gas, supercold vapor, or cold equip- ment can cause serious tissue damage. Frozen tissue is painless and appears yellow and waxy. The burn site may become painful and will turn pink or red as it warms. Cryogenic burns need medical attention. Assistance for a cryogenic injury should be obtained as soon as possible. No cryogenic LNG burn is insignificant. Evaluation and treatment of damaged tissue needs proper medical attention because incorrect first aid practices can make the situation worse.


Reactivity


Natural gas, for the most part, is stable and rarely reacts with other chemicals. However, a few chemicals (oxidizers) can make it extremely dangerous. Nat- ural gas is a fuel, so any strong oxidizers, especially in the gaseous state, such as oxygen-enriched atmospheres, fluorine and chlorine, can make natural gas very explosive. Chlorine and natural gas can explode in sunlight, and fluorine and natural gas and chlorine can explode on contact.


Oxygen-enriched Atmospheres


The most common oxidizer is oxygen present in the air in concentrations of 21%. At this concentration natural gas is flammable and becomes even more so as the oxygen increases in the atmosphere. Flammable atmospheres become extremely explosive in oxygen-enriched situations. In such atmos- pheres the flammable range of products like natural gas will widen and the ignition temperature will become lower.


SUMMARY


Responding to gas emergencies is as complicated a task as any hazardous materials event. Responders must recognize that natural gas is present and must understand its physical and chemical properties. This knowledge will enable them to properly assess the hazard, analyze the risk, and operate safely at these incidents.


34

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136