search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Page 74


www.us-tech.com


December, 2019


Austin, TX — NXP has introduced its i.MX RT1170 family of crossover MCUs that combines unprecedented performance, reliability and high lev- els of integration to propel industrial Internet of Things (IoT) and automo- tive applications. The NXP i.MX RT1170 family


reinforces the company’s commitment to advance edge computing with its EdgeVerse portfolio of solutions and marks a technology breakthrough with MCUs that run up to 1 GHz, while maintaining low-power efficiency. To achieve an optimized balance


of power, performance and cost, the solution uses an advanced 28 nm FD- SOI technology, making NXP, report-


NXP Launches GHz Microcontrollers


edly, the first company to build MCUs in this advanced technology node. The i.MX RT1170 MCU fea-


tures include: a dual-core architec- ture with the Arm® Cortex®-M7 core running up to 1 GHz and Cortex-M4 running up to 400 MHz, 2D vector graphics core, NXP’s pixel processing pipeline (PxP) 2D graphics accelera- tor, and EdgeLock 400A, the compa- ny’s advanced embedded security technology. It is designed to deliver a record-setting 12 ns interrupt response time, 6468 CoreMark score and 2974 DMIPS, while executing from on-chip memory. The new crossover MCU integrates up to 2 MB of on-chip SRAM, including 512 kB that can be configured as TCM with error code correction (ECC) for Cortex-M7 use, and 256 kB of TCM with ECC for Cortex-M4 use. The i.MX RT1170 dual-core sys-


tem pairs a high-performance core and a power-efficient core with independ- ent power domains of operation, enabling developers to run applica- tions in parallel or reduce power con- sumption by turning off individual cores as necessary. The energy-effi- cient Cortex-M4 core can be dedicated to time-critical control applications, such as sensor hub and motor control, while the main core runs more complex applications. Additionally, its dual- core system can run ML applications in parallel, such as face recognition with natural language processing to create human-like user interactivity. For edge compute applications,


the GHz Cortex-M7 core significantly enhances performance for machine learning, edge inference for voice, vision and gesture recognition, natu- ral language understanding, data analytics, and digital signal process- ing (DSP) functions. The combina- tion of GHz performance and high density of on-chip memory speeds up face recognition inference time by up to five times compared with today’s fastest MCUs in the market, in addi- tion to having processing bandwidth to improve accuracy and immunity against spoofing. The GHz core is also exception-


ally efficient in executing computa- tionally demanding voice recogni- tion, including audio preprocessing (echo cancellation, noise suppression, beam forming, and barge-in) for


improved cognition. Contact: NXP USA, Inc., 6501


William Cannon Drive West, Austin, TX 78735 % 408-802-0602 E-mail: tate.tran@nxp.com Web: www.nxp.com


Lost your news item of interest?


Find it once again at www.us-tech.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92