This page contains a Flash digital edition of a book.
Fig. 9. This diagram illustrates the reaction process in the mold material-coating-melt system.


图9. 该表说明了造型 材料-涂层-熔体体系 内的反应过程。


Te fewer alloy elements the melt contains, the more severe the casting defect is. Te chemically bound organic binders (furan and phenolic resin) decompose as a result of pyrolysis. Te free carbon instantly reacts with oxygen, forming CO. Since a reduced atmosphere prevails within the enclosed mold, some free carbon remains. Te car- bon reduces SiO2


is


formed. Te silicon can also be used as a reducing agent, which means that SiO(g)


4. It is therefore extremely important to use systems with fewer reducing agents. Te SiO2


as described in equation 3 and SiO(g) can form as described in equation component can be reduced


by using a coating containing no or just a small amount of silicon. Tis minimizes the severity of the casting defect but does not eliminate it completely. When inorganic binder systems are used instead of organic binder systems, the cast- ing defect is eliminated but problems associated with the severe sintering of the mold material arise. On the basis of the experiments conducted and the available literature, Figure 9 shows the process by which the reactions resulting in the defect could potentially take place. Te reaction products—amorphous and fibrous silicon—


were examined and evaluated in terms of both the mold material and cast. Carbon-like structures were identified in these phases. Tese phases were formed in the system at temperatures of less than 1,000C because the casting temperature is around 1,350C and the casting stays in the mold for another three to eight days. Following unpacking, the temperature is around 300C–400C, which means the casting still needs to be air-cooled before being processed any further. Tis means that the casting defect that takes the form of a white film can occur through the process described. Following processing, the surface takes on a pitted appearance because the casting defect can be easily removed from the surface. Tese pits/holes that mark the surface and are formed when the casting is solidified arise due to either the defor- mation of any gas that has developed or its penetration into the casting surface. Gas develops on the mold and core side when the binders are combusted. Te gas can penetrate the casting surface only when the excess gas pressure exceeds the resistance on the metal side. Tis resistance is a function of the casting height and specific weight of the liquid melt. Tis can lead to the formation of large holes on the casting surface. Te smaller surface deformation arises due to the mechanical penetration of the gas in the liquid melt at the interface between the metal and mold material. ■


显:合金元素越少,铸件缺陷越严重。化学有机粘 结剂(呋喃和酚醛树脂)受热分解。游离碳会立即 与氧气发生反应,生成CO。由于密闭砂型内以还 原环境为主,因而会剩余一些游离碳。如反应式3 所述,碳会还原SiO2


,形成SiO(g) 还原剂,即也可按反应式4形成SiO(g)


。硅也可以用作 。因此,使


用还原剂较少的体系极其重要。可以通过使用不含 硅或只含有少量硅的涂料来还原SiO2


铸件缺陷的严重程度,但不能完全消除缺陷。使用 无机粘结剂体系取代有机粘结剂体系时,铸件缺陷 被完全消除,但是又会出现造型材料严重烧结的问 题。


在这些实验和现有文献的基础上,图9显示了导致 缺陷可能发生的反应过程。


反应产物——无晶和纤维状硅——均已根据造型 材料和铸件进行了检测和评估。在这些相内发现了 类似碳的结构。在温度低于1000℃时体系内会形成 这些相,因为铸造温度为约1350℃,而铸件会在砂 型内停留3至8天。开箱后,温度为约300℃-400℃ ,因而铸件在进一步处理前仍需用空气冷却。也就 是说,表现为白膜的铸件缺陷可能在上述过程中出 现。经过处理后,因为可以轻易地从表面清除这层 白膜,但是铸件表面就会呈麻面。


表面上的这些孔/洞形成于铸件凝固时,受所生 成气体的变形或其渗入铸件表面的影响而产生。粘 结剂氧化时,砂型和砂芯一侧会产生气体。只有当 额外的气体压力超过金属侧的阻力时,气体才可能 渗入铸件表面。该阻力是铸件高度与铁水具体重量 之间的函数。这可能导致在铸件表面形成较大的孔 洞。较小的表面变形是由于金属和造型材料接触面 的铁液内气体的机械渗透引起的。 ■


。这最小化了


December 2014 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 67


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86