This page contains a Flash digital edition of a book.
Developing Cobalt-Boron Alloyed Steel


A Netherlands-based metalcasting facility has developed a steel alloy that is contributing to the reduction of CO2 emissions.


MIRCO KAPPLER, SANDE STAHLGUSS GMBH, VERTRIEB


钴硼合金钢的开发 一家总部位于荷兰的铸造厂开发了可减少CO2排放的合金钢。


Sande铸钢公司销售部Mirco Kappler


chrome cobalt-boron steel (called CB2, GX13CrMoCoVN- bNB9-2-1). Due to the use of this material, the efficiency of power plants can be raised and C02-emissions can be reduced significantly. In the face of the global growth of energy consumption


S


and reduction of fossil fuel reserves, power plant operators and designers have been trying to improve plant efficiency throughout the entire industrialized world. Several indus- trialized countries have committed to reduce CO2 emis- sions. Just recently the U.S. administration confirmed its goal to reduce carbon-dioxide emissions by 30% by 2030. As nuclear energy in Germany will be phased out through 2022, a significant need for the construction of new fossil power plants and upgrades to existing fossil power plants is evident as renewable resources will not completely meet the rising energy demand in the medium run. As develop- ing and newly industrialized countries are focused on the robustness of power plants and a favorable cost performance ratio, the industrialized countries are looking for measures to improve the power plant efficiency and reduce the ecologi- cal footprint. An example for a highly efficient power plant technology is the combined cycle power plant “Irsching 4” constructed by SIEMENS. Globally, the average coal fired power plants have an


efficiency of approximately 44%. Te major part of energy input remains unused. One option to enhance the efficiency is to make use of the combined cycle cogeneration plants (CCCP). Doing this can raise the efficiency level by up to 50% (Fig. 1). Notwithstanding, the design optimization of combined


cycles dictates the efficiency of power plants can be enhanced by raising the operating temperature. Te goal is to minimize the loss of heat and to operate turbines at higher tem- peratures and pressures. A proven side effect of enhancing


ande Stahlguss GmbH (SSG) manufactures steel castings mainly for energy generating purposes. Since 2011 SSG has been casting parts in a newly developed high alloyed 9%


S


ande铸钢公司生产的铸钢件主要用于能源行 业。自2011年开始,Sande铸钢公司所生产的 铸钢件已经使用新研发的含有9%铬-钴-硼的合


金钢(称为CB2, GX13CrMoCoVNbNB9-2-1)。由于 使用了这种材料,电厂的能效显著提高,CO2的排放显 著减少。


面对全球能耗的增长和化石燃料的减少,电厂的管理 者和设计者在工业化进程中不断寻求提高能效的方法。 已有几个工业国家承诺减少CO2的排放。例如,美国最 近已确定到2030年减少30%CO2的排放,而德国将于 2022年前逐步淘汰核能。由于可再生能源在中期将不 能完全满足不断增长的能源需求,因此,新化石燃料发 电厂的建设和现有化石发电厂的升级改造的需求显然将 变得尤为突出。发展中国家和新兴工业化国家关注电力 行业的健康发展和较高的性价比,工业化国家正在寻找 提高电厂能效、减少CO2排放的解决方案。西门子公司 开发的联合循环发电厂“Irsching 4”是高效能发电技 术的一个例子。


全球范围内的燃煤发电厂平均效率约为44%,大部分 的燃料未被利用。提高能效的一个方法是采用联合循环 发电厂(CCCP),通过此方法,能效可提高到50%(图1 )。


联合循环发电厂的优化设计意味着电厂可以通过提 高运行温度来提高能效,其目的是使热能的损失降到最 低,使汽轮机可以在较高的温度和压力下运行。通过提 高运行温度来提高能效的同时可以减少CO2的排放。 传统的铸钢生产的节能要求是合金钢在长期操作中 需承受560C (1,040F)的高温,以及250 bar (3600 psi)


December 2014 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 51


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86