news digest ♦ LEDs
the typical use of halogen and compact fluorescent downlights in these areas of the hotel.
“We selected Bridgelux LED arrays as the light source for our luminaires because they deliver the high quality of light and product reliability demanded by both our company and the Sheraton Hotel’s rigorous lighting standards,” explained John Cho, President of Ilsung Moolsan.
“The Bridgelux arrays offer a high quality, highly cost-effective and easy to integrate solution while providing the beautiful, natural warm white light required for this high-end hotel environment,” he continued.
Bridgelux provides one of the industry’s broadest ranges of high quality, high performance LED light sources. The firm’s LED chips enable lighting OEMs to expand their portfolios of energy efficient lighting products to satisfy the power saving requirements without sacrificing light quality.
The firm hopes to help rapidly transform the lighting Industry and to support government-led programs such as the Korean Government’s “LED Lighting 2060 Plan,” announced in June to promote greater energy efficiency by increasing the use of LED lighting.
“Bridgelux is very pleased to have been selected by Ilsung Moolsan to provide the solid state light source for their down lights,” said Jim Miller, chief sales and marketing officer at Bridgelux. “The collaboration between Ilsung Moolsan and the Sheraton organisation is an outstanding example for any hotel looking to gain significant and immediate savings. Switching to LED lighting now offers not only energy savings and maintenance avoidance, but also delivers the quality of light demanded by even the top hotels in the industry.”
Zinc Oxide microwires enhance LEDs
By using a piezoelectric material alongside a gallium nitride LED, the external efficiency can be amplified by a factor of more than four times.
Scientists have used zinc oxide microwires to significantly improve the efficiency at which GaN
88
www.compoundsemiconductor.net November/December 2011 LEDs convert electricity to ultraviolet light.
The devices are believed to be the first LEDs whose performance has been enhanced by the creation of an electrical charge in a piezoelectric material using the piezo-phototronic effect.
By applying mechanical strain to the microwires, researchers at the Georgia Institute of Technology created a piezoelectric potential in the wires, and that potential was used to tune the charge transport and enhance carrier injection in the LEDs.
This control of an optoelectronic device with piezoelectric potential, known as piezo-phototronics, represents another example of how materials that have both piezoelectric and semiconducting properties can be controlled mechanically.
Studying LEDs
Zhong Lin Wang (right) and Ying Liu study LEDs whose performance has been enhanced through the piezo-phototronic effect. (Georgia Tech Photo: Gary Meek)
“By utilising this effect, we can enhance the external efficiency of these devices by a factor of more than four times, up to eight percent,” said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering. “From a practical standpoint, this new effect could have many impacts for electro-optical processes - including improvements in the energy efficiency of lighting devices.”
Because of the polarisation of ions in the crystals of piezoelectric materials such as ZnO, mechanically compressing or otherwise straining structures made from the materials creates a piezoelectric potential - an electrical charge. In the GaN LEDs, the researchers used the local piezoelectric potential to tune the charge transport at thep-n junction.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255