This page contains a Flash digital edition of a book.
Solar ♦ news digest


is capable of reaching the SQ Limit. Based on this work, Alta Devices, a private company co-founded by Yablonovitch, has been able to fabricate solar cells from GaAs that have achieved a record conversion efficiency of 28.4 percent.


“Owen Miller provided an accurate theory on how to reach the SQ Limit that for the first time included external fluorescence efficiency,” Yablonovitch says. “His calculations for gallium arsenide showed that external fluorescence provides the voltage boost that Alta researchers subsequently observed.”


The key to solar cell efficiency is not absorbing more photons but emitting more photons. (Image courtesy of DOE NREL)


Yablonovitch holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California (UC) Berkeley, where he is the James and Katherine Lau Chair in Engineering, and also directs the NSF Centre for Energy Efficient Electronics Science.


Other scientists who contributed to the ground breaking research are Owen Miller of Berkeley Lab, and Sarah Kurtz, at the National Renewable Energy Laboratory.


Yablonovitch, Miller and Kurtz describe how external fluorescence is the key to approaching the theoretical maximum efficiency at which a solar cell can convert sunlight into electricity. This theoretical efficiency, called the Shockley-Queisser efficiency limit (SQ Limit), measures approximately 33.5 percent for a single p-n junction solar cell. This means that if a solar cell collects 1,000 Watts per square metre of solar energy, the most electricity it could produce would be about 335 Watts per square metre.


Calculations by Miller, who is a member of Yablonovitch’s research group, showed that GaAs


Berkeley Lab’s Eli Yablonovitch (left) and Owen Miller showed that counter-intuitively, a great solar cell also needs to be a great LED. (Photo by Roy Kaltschmidt, Berkeley Lab)


Solar or photovoltaic cells represent one of the best possible technologies for providing an absolutely clean and virtually inexhaustible source of electricity. However, for this dream to be realised, solar cells must be able to efficiently and cost- competitively convert sunlight into electricity. They must also be far less expensive to make.


The most efficient solar cells in commercial use today are made from monocrystalline silicon wafers and typically reach a conversion efficiency of about 23 percent. High grade silicon is an expensive semiconductor but is a weak collector of photons. GaAs, although even more expensive than silicon, is more proficient at absorbing photons, which means much less material is needed to make a solar cell.


“Gallium arsenide absorbs photons 10,000 times more strongly than silicon for a given thickness but is not 10,000 times more expensive,” says


November/December 2011 www.compoundsemiconductor.net 191


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255