news digest ♦ Telecoms than the stand-alone sensor.
Sofradir awarded multi- million Euro IR contract
The earth observation military satellite contract increases Sofradir’s achievements in supplying state-of-the-art IR detectors based on mercury cadmium telluride technology, for space applications.
French firm Sofradir, a developer and manufacturer of advanced infrared detectors for military, space and industrial applications, has been awarded a multi-million Euro contract.
The firm will manufacture Infrared (IR) detectors for the engineering and flight model phases for the MUSIS/CSO next generation Earth observation military satellites. These satellites will replace the current Helios 2 observational system.
Within the framework of the four-year MUSIS/ CSO contract, Sofradir will deliver to Thalès Alenia Space France (TAS-F), a worldwide manufacturer of satellite and space equipment, high resolution custom design IR focal plane arrays for the optical imaging cameras. The exact value of the contract was undisclosed.
“After our successful involvement in the satellites Helios IIA and IIB, launched in 2004 and 2009 respectively, Sofradir is proud to be part of the MUSIS/CSO project and have the continued confidence of the French MoD and TAS,” said Philippe Bensussan, chairman and CEO at Sofradir.
“Our expertise in developing state-of-the-art IR detectors for Earth observation applications will be further strengthened through this collaboration. We look forward to other opportunities to make our MCT IR detectors that operate reliably in harsh environments available for other challenging space projects in Europe and around the world.”
The CSO (Optical Space Component) is the French government’s contribution to the future MUSIS (MUltinational Spacebased Imaging System) that will include optical and radar space components. Astrium, a leading aerospace company, is the prime contractor for the CSO satellite development
132
www.compoundsemiconductor.net November/December 2011
contract. The French space agency CNES awarded the contract to Astrium in 2010. CNES was delegated by the French procurement agency DGA to manage the project.
Sofradir first became involved in MUSIS/CSO in 2005, when it carried out a feasibility study and preliminary development of the IR detectors. Sofradir will complete delivery of all the IR detectors by 2015. These are based on Sofradir’s Mercury Cadmium Telluride (MCT) technology, a highly complex semiconductor material that is unavailable to all but a few manufacturers in the world because it is tricky to master.
Imec demonstrates extremely high-speed SiGe HBTs
The silicon germanium devices open new avenues in wireless communications and imaging.
Imec have created a fT/fMAX 245GHz/450GHz SiGe:C HBT device, a key enabler for future high- volume millimetre-wave low-power circuits to be used in automotive radar applications.
These HBT devices also pave the way to silicon- based millimetre wave circuits penetrating the so-called THz gap, enabling enhanced imaging systems for security, medical and scientific applications.
The extremely high-speed devices have a fully self- aligned architecture by self-alignment of the emitter, base and collector region, and implement an optimised collector doping profile. Compared to III-V HBT devices, SiGe:C HBTs combine high-density and low-cost integration, making them suitable for consumer applications.
Such high-speed devices can open up new application areas, working at very high frequencies with lower power dissipation, or applications which require a reduced impact of process, voltage and temperature variations at lower frequencies for better circuit reliability.
To achieve the ultra high-speed requirements, state- of-the-art SiGe:C HBTs need further up-scaling of the device performance. Thin sub-collector doping profiles are generally believed to be mandatory for
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255