This page contains a Flash digital edition of a book.
research  review Corning simplifies semi-polar green lasers


Semi-polar lasers don’t need electron-blocking layers to deliver high output powers in the green devices.


REMOVING the electron-blocking layer (EBL) has little impact on the performance of green semi-polar lasers, according to experimental efforts by researchers at Corning. This US team has shown that even when the EBL is omitted, semi-polar lasers can still have good injection efficiencies and deliver in a relatively similar perforance over a wide temperature range.


These beneficial characteristics strengthen the case that the semi-polar green laser is the best candidate for providing a single- chip green source for various ‘RGB’ displays, including pico-projectors.


Lead-author Dmitry Sizov argues that the team’s findings should not raise any eyebrows, given that EBLs are rarely used in semiconductor systems that are free from polarization fields. “Semi-polar structures with reduced polarization fields are closer to those systems, which may be part of the reason why the EBL is not critical,” says Sizov. He and his co-workers also believe that the carrier injection mechanism in semi- polar laser-diodes differs from those in their conventional cousins.


Removing the EBL from semi-polar lasers


Driven in pulsed mode, all of these lasers show no significant change in slope efficiency with temperature, indicating that variations in design had little impact on injection efficiency.


Temperature insensitivity, which was determined by values for the ‘characteristic temperature of lasing threshold’, T0


, did


not depend on the inclusion or absence of the EBL. However, the value of T0


for all


Corning’s semi-polar lasers deliver a 60 mW continuous-wave output at 519 nm


could make the semi-polar lasers more attractive, because it enables the devices to combine superior injection architectures with lower operating voltages.


Corning’s engineers exposed the lack of importance of the EBL by comparing the performance of 11 semi-polar devices with ridge widths of 1.0 µm, 1.5 µm and 2.0


µm and emission wavelengths ranging from 508 nm to 522 nm. Four of these MOCVD-grown lasers had an Al0.28


Ga0.78 N


EBL positioned 10 nm above the top-most QW; the other seven were EBL-free


D. Sivoz et al. Appl. Phys. Express 4 102103 (2011)


Flipping 60 GHz transistors InGaAs HEMTs form two-stage gain blocks delivering 9 dB of gain while consuming just 20 mW


A TEAM of Taiwanese engineers has used flip-chip packaging to build an InGaAs HEMT delivering up to 6.5 dB of gain at 60 GHz.


The researchers argue that one of the strengths of flip-chip technology is its simplicity: The circuit needs no passive components, such as metal-insulator-metal capacitors and thin-film resistors.


“The main advantage of this approach is the inclusion of matching circuits on the carrier for flip-chip packaging. This provides a cost effective solution for seamless integration of the device onto the circuit,” claims team-member Edward Chang from Yuan Ze University.


Silicon CMOS can also yield circuits operating at 60 GHz, which can find deployment in wireless personal area networks, wireless high-definition


multimedia interfaces and wireless docking stations. However, III-Vs have the upper hand in several key areas: A lower noise figure, lower DC power consumption and superior linearity.


Construction of 60 GHz devices began with MBE growth of HEMT epistructures featuring a 15 nm-thick In0.6


Ga0.4 As channel. Epiwafers were thinned to


100 µm and diced into die that were screened for DC and RF characteristics. Good die were then bonded to sapphire substrates, which were coated with a thin film of metal that had been processed to create transmission lines.


Flip-chip packaging made no impact on the DC performance of the InGaAs HEMT, which has a drain-source current of 350 mA/mm and a transconductance of 600 mS/mm at a drain-source voltage


50 www.compoundsemiconductor.net November/December 2011


Cheng claims that the simplicity and low- cost of the process makes the flip-chip approach suitable for high-volume manufacturing: “It’s based on the very mature PCB printing technology.”


The team is aiming to make its process even cheaper with flip-chip-on-board technology that replaces substrates with organic dielectrics.


C.-Y Chiang et. al. Appl. Phys Express 4 104105 (2011)


of 0.5 V. Minimal parasitic effects at interconnections lead to a 0.7 dB reduction in the maximum achievable gain to 6.5 dB.


Two-stage gain blocks were also built with the team’s flip-chip approach. At 60 GHz these devices delivered 9 dB of small signal gain when drawing just 20 mW.


these lasers, which ranged from 161 K to 246K, is significantly higher than the typical value for conventional green laser diodes.The team attribute’s the superior temperature insensitivity of the semi-polar laser to intrinsic quantum well properties, such as a higher recombination rate. The team’s most impressive EBL-free laser emits at 519.4 nm and delivers a CW output of 60 mW at 10 o


C, falling to 35 mW at 60 o


Sivoz and his co-workers plan to continue working on the development of novel approaches for creating efficient laser devices, including GaN-based lasers.


C.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255