Lasers ♦ news digest
•Gallium nitride from both a product perspective and foundry - Dr Otto Berger, Corporate Advanced Technology Director, TriQuint Semiconductor
•Damage - free Deposition on LED devices –Dr Silvia Schwyn Thöny, Senior Process Engineer, Evatec Ltd
•Temporary Bonding: An enabling technology for RF and power compound semiconductor devices - Dr Thomas Uhrmann, Business Development Manager, EV Group (EVG)
The technology will form a very valuable and complimentary addition to the existing products of InnoLas Laser, and will greatly enhance the range of solutions that the company can offer to customers in the near-term and future.
Diode lasers to battle it out with LEDs
The new kids on the block, diode lasers, can produce high-quality white light using a four-colour laser source and could challenge LEDs for home and industrial lighting supremacy.
InnoLas and Advanced Optical collaborate on laser product line
The German laser company will acquire the complete ACE short-pulse product line of the English specialist company.
InnoLas Laser and Advanced Optical Technology have agreed terms for the German laser company to acquire the complete ACE short-pulse product line of the English specialist company.
Reinhard Kelnberger from InnoLas Laser and Clive Ireland of AOT noted that the agreement provides an excellent opportunity for the growth of the product line and expansion of market penetration. Starting in January 2012 the manufacturing of the lasers will be relocated to the InnoLas Laser headquarters in Krailling, Germany and at the same time sales and service will be organised from Germany as well.
The AOT products are compact and unique efficient high repetition-rate short-pulse solid state lasers (nano- and picosecond) operating with high energy in the UV, visible and near infra-red. Proprietary high speed switching technology allows the E-O Q-switched laser products to deliver kHz pulses below 1ns duration that are synchronisable to external events with sub-nanosecond accuracy.
They are intended for a wide range of R&D, scientific and high precision industrial applications.
November/December 2011
www.compoundsemiconductor.net 167
The human eye is as comfortable with white light generated by diode lasers as with that produced by increasingly popular LEDs, according to tests conceived at Sandia National Laboratories.
Both technologies pass electrical current through material to generate light, but the simpler LED emits lights only through spontaneous emission. Diode lasers bounce light back and forth internally before releasing it.
The finding is important because LEDs, widely accepted as more efficient and hardier replacements for century-old tungsten incandescent bulb technology, lose efficiency at electrical currents above 0.5 amps. However, the efficiency of a sister technology, the diode laser, improves at higher currents, providing even more light than LEDs at higher amperages.
“What we showed is that diode lasers are a worthy path to pursue for lighting,” said Sandia researcher Jeff Tsao, who proposed the comparative experiment. “Before these tests, our research in this direction was stopped before it could get started. The typical response was, ‘Are you kidding? The colour rendering quality of white light produced by diode lasers would be terrible.’ So finally it seemed like, in order to go further, one really had to answer this very basic question first.”
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255