search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Supplements & functional ingredients


structure of these subtypes. Since this discovery, research has flourished on the topic, resulting in the collation of a large volume of information and allowing for a greater understanding of the vitamin. Evidence has elucidated its vital role in the coagulation pathway, with more recent research investigating the effect it has on extra-hepatic processes in the body. In particular, vitamin K2 has shown to have a considerable effect on calcium metabolism. The main batch of research in the past few years has been on how it effects the remodelling of bones, which yielded limited clinical application but improved understanding of this vitamin. This is further illustrated by the discovery of novel beneficial areas, such as the reduction of calcification of blood vessels within the body. Bone-remodelling requires a variety of cells including osteoblasts, osteoclasts and osteocytes. Osteoblasts are constantly synthesising the non- collagenous protein osteocalcin. Osteocalcin is one of the most copious proteins in bone and has been proved to be one of numerous vitamin K-dependent proteins. This would make vitamin K essential for bone-remodelling – a key role in calcium metabolism.


Vitamins for the heart Currently, there are seven million people living with cardiovascular disease in the UK and the cost of their care is estimated to be £9bn each year. Many of these people will be undergoing treatment for diseases such as hypertension. There are a few cardiovascular diseases that can be caused by arterial calcification, especially of the major blood vessels such as the aorta. Vitamin K2 is effective in reducing the levels of calcium available in the blood – decreasing the rate of deposition in vascular structures. However, some studies researching this topic used other vitamins and minerals alongside vitamin K2, such as calcium and vitamin D. This could either represent a confounding variable, decreasing reliability of the articles, or suggest a synergistic effect of taking vitamin K2 with other vitamins. Vitamin K2 has a multitude of other effects on calcium, due to the presence of vitamin K-dependent proteins. It remains unknown whether vitamin K2, in isolation, is responsible f or its supposed positive attributes.


Metabolism of calcium


Calcium is directly influenced by the amounts of vitamin K in the body as it affects processes such as the calcification of blood vessels, maturation of sperm in the testes and bone formation. When calcium metabolism is impaired, the resultant increase in arterial calcification and decreased calcium content of bone is known as the calcium


Ingredients Insight / www.ingredients-insight.com


The bone remodelling cycle occurs constantly in different phases around the body, with an aim to strengthen the bone and repair any microfractures present. This cycle takes around 120 days to complete and is divided into six phases: quiescence, activation, resorption, reversal, early formation and late formation, before returning to the quiescence


31


paradox. Calcium is predominantly regulated by parathyroid hormone (PTH) and vitamin D, with other receptors for ionised calcium providing additional modulation.


A decrease in serum calcium would be regulated through a negative feedback loop that results in reduced activation of calcium receptors in the parathyroid gland. The subsequent secretion of PTH causes increased reabsorption of calcium from the kidneys, while also increasing serum calcium through the activation of osteoclasts in the bone. The kidneys are also stimulated by PTH to secrete vitamin D, which allows more calcium to be taken up through calcium channels in the gastrointestinal tract (GIT). One Korean study illustrated that when vitamin D and calcium are supplemented with vitamin K, there was significant improvement in the bone mineral density (BMD) of postmenopausal women aged over 60. Abnormalities in calcium homeostasis can lead to an imbalance in the normal physiological functions of calcium. Many conditions are closely related to vascular calcification, including hyperlipidaemia, chronic kidney disease (CKD) and diabetes. These diseases can increase the risk of calcification and formation of atherosclerotic plaques. Many conditions are closely related to vascular calcification, including hyperlipidaemia, chronic kidney disease (CKD) and diabetes. Calcium has multiple physiological functions, while vascular calcification is a common example, there are several diseases affecting bones. Stromal and mesenchymal stem cells are precursor cells found in bone, developing into osteoblasts and osteoclasts that carry out bone remodelling. These precursor cells line the active bone surface, helping to form the hydroxyapatite crystals in the bone matrix. Originating from the bone marrow, the cells will carry vitamin K2 and small amounts of vitamin K1 that they absorb from circulating in the blood.


£9bn British Heart Foundation 1 in 3 NCBI


The estimated cost of care each year for the seven million people living with cardiovascular disease in the UK.


The number of women over 50 that are expected to experience an osteoporotic fracture, worldwide.


“Calcium is directly influenced by the amounts of vitamin K in the body, as it affects processes such as the calcification of blood vessels, maturation of sperm in the testes and bone formation.”


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96