Threatened mammals of India 661
Table 2 (Cont.) Species
Artiodactyla/Cervidae Barking deer Muntiacus muntjak
Sambar Rusa unicolor
Artiodactyla/Moschidae Musk deer Moschus spp.
Artiodactyla/Suidae Indian wild boar Sus scrofa
Rodentia/Hystricidae Indian porcupine Hystrix indica
Rodentia/Sciuridae Red giant flying squirrel Petaurista petaurista
Woolly flying squirrel Eupetaurus cinereus
Himalayan marmot Marmota himalayana
Five-striped palm squirrel Funambulus pennantii
Primates/Cercopithecidae Central Himalayan langur Semnopithecus schistaceus
Hanuman langur Semnopithecus entellus
Rhesus macaque Macaca mulatta
Lagomorpha/Ochotonidae Royale’s pika Ochotona roylei
Tibetan woolly hare Lepus oiostolus
Large eared pika Ochotona curzoniae
Black naped hare Lepus nigricollis
Red List status1
Least Concern Vulnerable Endangered Least
Concern Least
Concern Least
Concern
Endangered Least
Concern Least
Concern Least
Concern Least
Concern Least
Concern Least
Concern Least
Concern Least
Concern Least
Concern
Present (N = 3)
Present (direct sighting, N= 1)
2.83 ± 1.72 (N = 88)
Present (direct sighting, N= 2)
2.42 ± 1.32 (N = 27)
Present (N = 3)
2.14 ± 1.23 (N = 16)
Present (direct sighting, N= 20)
3.80 ± 0.90 (N = 61)
Present (direct sighting, N= 5)
3,875–5,181 4,000–4,400 2,169–2,298
1According to the IUCN Red List of Threatened Species (IUCN, 2020). 2The brown bear Ursus arctos is categorized as Least Concern at species level, but the Himalayan brown bear U. arctos isabellinus is Endangered according to a separate subpopulation assessment (McLellan et al., 2016).
Redlands, USA). We used data from repeated sampling at the same sites (summer and winter) and incorporated site as a random effect variable. We used captures of species as the response variable and number of trap days (log- transformed) as offset, to account for variation in the trap- ping effort between sites. Habitat features (elevation, rug- gedness, slope) and anthropogenic pressures (capture rate of humans, dogs and livestock) were used as fixed predictor variables (Table 3). We acquired data on elevation from Shuttle Radar Topography Mission (Jarvis et al., 2008), at
a resolution of 1 × 1 km pixels. Slope and ruggedness were calculated from the elevation layer in ArcGIS. For the brown bear, we examined only summer data as they hiber- nate in winter, using a Poisson-distributed generalized linear model. We tested for the presence of over disper- sion in the dataset and selected the appropriate error distribution (i.e. Poisson, negative binomial). We also eval- uated the data for zero-inflation. We used Akaike’s infor- mation criterion adjusted for sample size (AICc) to rank models, and we considered the best supported models to
Oryx, 2021, 55(5), 657–667 © The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319001352
Present (N = 2)
12.49 ± 4.50 (N = 344)
2.15 ± 0.69 (N = 125)
3.85 ± 1.50 (N = 124)
4.80 ± 1.75 (N = 59)
Present (N = 3)
Subtropical Temperate
27.01 ± 6.25 (N = 425)
7.70 ± 2.50 (N = 72)
4.44 ± 1.74 (N = 193)
17.85 ± 4.06 (N = 651)
Present (N = 7)
5.17 ± 1.73 (N = 192)
2.25 ± 1.09 (N = 56)
Present (N = 10)
Present (N = 1)
11.17 ± 7.94 (N = 88)
Present (N = 5)
3.55 ± 1.29 (N = 140)
2.18 ± 0.90 (N = 36)
Alpine– subalpine
Trans-Himalaya
Elevation range (m)
509–3,090 500–3,500
2,915–3,878 509–3,663 509–3,274
1,500–3,000 2,700
4,180–4,608 500–1,300
509–3,663 500 509–4,505
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164