NEWS REVIEW
Scientists make progress toward quantum dot solar cell
THE RESEARCH PROGRAMME of Natcore Technology being conducted under a joint research agreement with Rice University has accomplished steps toward realization of a manufacturable quantum dot solar cell.
The work is being supervised by Andrew Barron, a Natcore co-founder.
Three key requirements must be met to make a quantum dot solar cell: create quantum dots of the proper size; create a uniform layer of those same quantum dots embedded in a thin film of silicon dioxide; and arrange the quantum dots such that the average inter-dot distance between any two of them is less than 10nm.
The scientists claim to have successfully met all three requirements. The researchers claim they have successfully embedded 20nm-diameter germanium quantum dots (Ge QDs) inside smooth, round shells of silica (silicon dioxide); dispersed the coated quantum dots on a surface with a simple spraying technique; and coated the layer with a film of silicon dioxide using Natcore’s liquid phase deposition (LPD) process. The coated quantum dots are represented by the chemical symbol Ge@SiO2.
Scanning electron microscopes and transmission electron microscope analysis of the films, coupled with a measurement of the photocurrent generated when the film was exposed to a light source, showed that very nearly 70% of the Ge@SiO2 quantum dots were within the 10nm maximum separation between nearest neighbours that is needed for high efficiency device operation. The resulting samples were one square centimetre in size.
With an applied voltage across the film thickness and illuminated by a laboratory white light operating at approximately one sun intensity, the film produced a current of over 6 milliamps.
The 6ma current represents a threefold increase over the first attempts to make a QD layer device, as reported by Natcore in an earlier news release.
“We’ve been working towards this for a long time,” says Dennis Flood, Natcore’s co-founder and Chief Technology Officer. “It paves the way to a tandem solar cell using quantum dot material. We’re preparing a provisional patent application.”
Chuck Provini, Natcore’s president and CEO, says, “This is a remarkable improvement in photo-generated current in the silica film. Barron’s group has done an excellent job moving this from scientific research through proof of concept.
Now the researchers at our Rochester R&D Center will focus on developing a working prototype.
12
www.compoundsemiconductor.net August / September 2013
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178