This page contains a Flash digital edition of a book.
research  review One giant leap for IR technology


Removing gallium from III-V type-II superlattice materials delivers a massive hike in minority carrier lifetime.Thanks to this,these superlattice detectors have the potential to start challenging expensive state-of-the-art HgCdTe infrared imagers.


Researchers have demonstrated that InAs/InAsSb Type-II superlattice (T2SL) materials could be a better alternative to conventional InAs/InGaSb T2SLs. This discovery was made by scientists at Arizona State University and IQE.


Time-resolved photoluminescence of the gallium-free LWIR superlattice exhibited a lower-limit 412 ns minority carrier lifetime at 77 K, more than an order of magnitude increase compared to 30 ns for conventional LWIR InAs/InGaSb T2SL type structures. Researchers at the US Army Research Laboratory say they have, for the first time, measured lifetimes approaching the reported record (~1 µs) for HgCdTe alloys. This, they say, could pose a realistic alternative to HgCdTe for high performance IR detector and focal plane array (FPA) applications. State-of-the-art infrared imagers made using HgCdTe technology suffer from high costs due to


expensive substrates, device processing, a decreasing yield with longer cut-off wavelength, and the need for a low- temperature cryogenic dewar. The breakthrough in the minority carrier lifetime demonstrated in an InAs/InAsSb T2SL could eventually enable infrared imagers to be manufactured with much lower costs using commercial III-V processes and the vast resources of MBE foundries.


What’s more, T2SL materials have long been predicted to possess longer carrier lifetimes than HgCdTe due to the suppression of Auger recombination. However, Shockley-Read-Hall recombination in the previous III-V T2SL materials prevented the demonstration of the theoretical high performance and limited the minority carrier lifetime to ~30 ns in the LWIR (8-12 µm) range.


With the recent advances in the size and


availability of 4 inch GaSb substrates, future infrared FPA assemblies would cost much less and expand commercial applications into new areas such as the automotive, law enforcement, environmental monitoring, and safety surveillance industries. The researchers at Arizona State University and their collaborators are very optimistic about the future of gallium-free T2SL materials and the potential to improve the material with further bandgap engineering and defect reduction. It is worth noting that the carrier lifetime currently observed demonstrates a lower bound as the sample structures in this study have not been optimised. Better understanding of the recombination mechanisms, as well as improved bandgap designs are expected to advance existing gallium-free T2SL performance.


E. H. Steenbergen et al. Appl. Phys. Lett. 99 251110 (2011)


RABOUTET S.A.


Manufacturer of Molybdenum. Components for MBE. Specialized Cleaning & Degassing available.


RABOUTET S.A.


250 Av Louis Armand Z.I Des Grand Prés F-74300 Cluses France Tél : 33 (0)4 50 98 15 18 Fax : 33 (0)4 50 98 92 57 E-mail : info@raboutet.fr http://www.raboutet.fr


54 www.compoundsemiconductor.net March 2012


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136