This page contains a Flash digital edition of a book.
Lasers ♦ news digest


Unleashing next-generation technologies with electron- detection


Visible red light can be produced when applying a voltage across gallium arsenide crystals whilst simultaneously illuminating the material with an invisible infrared laser pulse


Physicists at the University of Kansas have discovered a new method of detecting electric currents.


The process is based on “second-harmonic generation,” and is similar to the process taking place in a radar gun for electrons that can remotely detect their speed.


The researchers say this new idea could improve many present-day renewable-energy technologies, like solar cells and batteries, which all rely on detection of electric currents. In the future, sensors that better read the motion of electrons could underpin next-generation cell phones and computers.


“So far, most techniques to detect electric currents are very much like measuring the speed of a car by tracking it with a camera, and later analysing how the position changes with time,” said Hui Zhao, assistant professor of physics at the University of Kansas (KU). “But for moving cars, a radar gun is a much better tool, since radar allows us to instantaneously measure the speed. Yet, for electrons, there has been no tool available that allows us to directly ‘see’ the motion like this.”


Zhao collaborated on the research at KU’s Ultrafast Laser Lab with Judy Wu, University Distinguished Professor of Physics, and graduate students Brian Ruzicka, Lalani Werake, Guowei Xu.


The researchers discovered that by shining light from a high-power laser onto a material that contains moving electrons, light of a different colour is generated.


By applying a voltage across thin GaAs crystals, they set electrons to move through it with a specified speed. When illuminating the crystal with an infrared laser pulse, invisible to the human eye,


March 2012 www.compoundsemiconductor.net 101


they found that visible red light was produced — a signature of the second-harmonic generation process.


What’s more, they observed that the brightness of the red-light increases with the speed of the electrons. In other words, when the electrons have no directional motion, no red light comes out.


“By detecting the red light, one can accurately determine the speed of electrons without making any contact with the sample and without disturbing the electrons,” Zhao said. “Before this study, it was generally known that an electric current has three effects: It can charge the system, change its temperature and produce a magnetic field. As a result, all experimental techniques of current detection were based on these effects. This newly discovered optical effect of currents opens up a new way of using lasers to study currents.”


The KU researchers’ experimental results are consistent with theoretical studies performed by professors Jacob Khurgin of John Hopkins University and Eugene Sherman from Spain.


This research was jointly funded by a five-year CAREER award from NSF and the NSF EPSCoR Kansas Centre for Solar Energy Research. The experimental equipment was developed under support of the KU College of Liberal Arts and Sciences new faculty start-up funds.


Further details of this research are detailed in a recent paper published in Physical Review Letters.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136