technology photodiodes
Figure 3.(a) The low mobility of holes limits the speed of conventional p-i-n photodetectors.(b) The UTC photodiode overcomes the limitation of low hole mobility by getting these carriers to relax in the p-contact metal without drift,diffusion or accumulation in the photo-absorption layer.However,if the electron is subjected to a high electric field,it can easily be swept to another electron potential valley with a heavier effective mass and a slower drift-velocity (c) With the NBUTC photodiode,a p-type charge layer is inserted inside the collector to control the distribution of the electrical field and minimize intervalley scattering
eliminating holes, which are far slower at moving through the device than electrons.
Thanks to their superior transport properties, vertical- illuminated type, waveguide type, and distributed type UTC-PDs can all deliver a high power-bandwidth product. However, there are still some weaknesses when the operating frequency of the UTC-PD is in the MMW (sub-THz) regime. In this frequency regime, the internal electron transient time, rather than the RC- limited bandwidth, tends to limit device bandwidth. In these devices the electron drift-velocity can saturate under a high external applied electric field due to intervalley scattering (see Figure 3). To prevent this, a very small reverse bias voltage, such as -0.75 V, can be applied to the thin collector layer (~200 nm thick). This is necessary to maintain the overshoot drift-velocity of the electron and maximise the speed performance of the UTC-PD.
The downside of using a very small reverse bias voltage to realise a high drift-velocity in a sub-MMW UTC-PD is that it tends to be screened by the output AC voltage produced by this device (see Figure 2a). A small load resistance, such as less than 25 Ω can minimize the amplitude of the output AC voltage, but this addition slashes the output power of the photodiode, which normally operates under a standard 50 Ω load.
To overcome such problems, our group at National Central University in Jhungli, Taiwan, has developed a near-ballistic uni-traveling carrier photodiode (NBUTC- PD). This outperforms a UTC-PD in the sub-MMW regime, in terms of the product of saturation current and bandwidth. One key feature of our photodiode is its p- type charge layer inside the collector layer, which can properly control the distribution of the electrical field and minimize intervalley scattering. Near-ballistic transport of electrons in the moderately high optimum reverse bias regime (-2 to -3 V) minimises external saturation. We note that a similar concept has also been reported in the near-ballistic collection HBT by researchers at the Electrical Communication Labs of NTT, Kanagawa.
Photonic transmitters
The backbone of future wireless communication networks operating at Gbit/s speeds will be the optical fibre based network, which connects different base stations, each distributing large volumes of data. Every base station in the MMW wireless network will need many pico-cells (or femto-cells) to radiate the photo- generated MMW power from the photodiode to the last- mile for the end-user.
Each photodiode is integrated with an antenna to form a photonic transmitter that radiates the photo-generated
March 2012
www.compoundsemiconductor.net 29
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136