This page contains a Flash digital edition of a book.
technology  photodiodes


Figure 4.(a) Conceptual diagrams of a broadside patch antenna and an end-fire tapered slot antenna for rectangular waveguide (WR) excitations; and (b) conceptual cross-sectional view of UTC-PD based photomixers with integrated patch antenna and tapered slot antenna for WR-10 and WR-08 waveguide excitations,respectively


.(re-printed by permission from A.Ueda,et al.,IEEE Trans.Microwave Theory Tech.,


vol.51,pp.1455-1459.May,2003 © 2003 IEEE and A.Hirata,et al.,IEEE Trans.Microwave Theory Tech.,vol.52, pp.1843-1850,Aug.2004 © 2004 IEEE)


MMW power. The high speeds and powers of UTC-PDs and NBUTC-PDs enable the construction of photo- transmitters that can produce a range of radiation patterns, operate at 0.1 to 1 THz, and deliver output powers that are typically 20 dB higher than those associated with photo-transmitters based on conventional photodiodes. By pairing the UTC-PD based photo-transmitter with an end-fire taper slot antenna or a broadside patch antenna, researchers have shown that it is possible to excite WR-10, WR-08, and WR-03 rectangular waveguide-based horn antenna (see Figure 4). This has enabled the demonstration of 10 Gbit/s and 16 Gbit/s line-of-sight data transmission using centre frequencies of 120 GHz and 300 GHz by use of the WR-08 and WR-03 waveguides based photonic transmitter, respectively.


Our NBUTC-PD based photo-transmitters have a unique advantage over UTC-PD based photo-transmitters: An ultra-fast switching speed. This means that the photo- generated MMW power from the NBUTC-PD can be shut ‘on’ and ‘off’ very fast with a high extinction ratio,


30 www.compoundsemiconductor.net March 2012


simply by switching the bias point. To realise this, we incorporate an additional input port, an intermediate- frequency input, into our device. We use this for injecting high-speed electrical data and for also modulating both the bias point and photo-generated MMW power of our novel photo-diode.


Our device can do more than just convert the incoming optical MMW envelope into electrical data: It can also up-convert incoming electrical data to the MMW regime. The entire device functions as an MMW mixer called the photonic-transmitter-mixer (see Figure 5). The superior modulation speed of our device stems from a combination of bias modulation in only the reverse bias regime, and a high extinction ratio MMW envelope, which predominantly originates from variations in electron drift-velocity in the collector layer under different reverse bias voltages.


However, in order to quench the photo-generated MMW power from the UTC-PD, it is necessary to push the device into near forward bias operation. This induces a


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136