This page contains a Flash digital edition of a book.
industry  SiC electronics


a switch. When the transistor is in its ‘off’ state it blocks high voltages, and in its ‘on’ state it delivers high currents with low power losses.


The SiC community has devoted significant effort to the development of SiC power MOSFETs. However, the improvement in high temperature performance of SiC MOSFETs is marginal over a silicon equivalent. That’s because the high-temperature limit for operation is determined by the interface between SiO2


than the level of current leakage from the pn junction. The conduction band offset between SiO2


and SiC is


quite small, resulting in the degradation of the MOS interface at relatively low temperatures. As a result, as of today, the junction temperature of the only commercially available SiC MOSFE is rated up to a just 125 °C.


To address this weakness and allow this class of transistors to fulfil its full potential, we have developed a high-temperature SiC switch: The ‘Super’ Junction Transistor (SJT). The hallmark of this gate-oxide free, normally-off, majority carrier device is its incredibly high current gain, which can exceed 88. It also has many other virtues, including a ‘square’ reverse-biased safe operating area, which allows extremely rugged operation in typical inductive motor and actuator drive applications.


What’s more, the temperature co-efficient of on- resistance for this transistor is slightly positive, which is desirable for paralleling multiple devices for high-current configurations; ‘turn-on’ and ‘turn-off’ times are less than 20 ns; operating temperature can exceed 250 °C; and the SJT features a low ‘on-state’ voltage drop and high- current operation, thanks to the absence of a channel region and a near-zero drain-source offset voltage.


Our SJTs combine a near-theoretical breakdown voltage with a temperature-independent, low-reverse-leakage current up to 325 °C. In addition, our SJT displays a distinct lack of a quasi-saturation region, and is notable for the merging of the different gate current I-V curves in the saturation region. The implication of these two features is a lack of charge storage in the drift region of the transistors – this distinguishes it from a ‘bipolar’ silicon BJT. The resulting benefit is temperature- independent, fast-switching transients. The low, on-state voltage drop stems from appropriate metallization schemes and an optimised epilayer design.


The switching performance of our 4 mm2 and 16 mm2


SiC SJTs have been evaluated by pairing them with an inductive load and our ‘free-wheeling’ 1200 V/ 7 A and 1200 V/30 A SiC Schottky diodes. To drive the SJTs, we used a commercially available IGBT gate driver with an output voltage swing from -8 V to 15 V. For the 4 mm2 SJTs, a 100 nF dynamic capacitor connected in parallel with the gate resistor can generate high initial dynamic gate currents of 4.5 A and -1 A during turn-on and turn- off switching, respectively. During the turn-on pulse, a constant gate current of 0.52 A was maintained. These


A realistic assessment of the performance of our SiC transistors and diodes demands a comparison with state-of-the-art silicon devices deployed in real circuits. To do this, we procured three best-in-class 1200 V silicon IGBTs: A NPT1 ‘non-punch-through’ IGBT, which is rated up to 125 °C and 1200 V; a ‘non-punch-through’ variant rated up to 150 °C and 1200 V, the NPT2; and a trench field stop (TFS) IGBT rated up to 150 °C and 1200 V. All three IGBTs were pre-packaged with silicon fast recovery diodes in anti-parallel configuration. These efforts revealed


March 2012 www.compoundsemiconductor.net 35


Figure 3: (Left,a) Turn-On and (Right,b) Turn-off drain current and voltage transients recorded for switching 800 V and 8 A through a 4 mm2


Figure 2.GeneSiC’s expertise includes – from left to right (a) two- dimensional device design through computer intensive finite element simulations; (b) Precise sub-micron controlled SiC reactive ion etching; (c) Complex integration of designs to fabrication tools and techniques; (d) high temperature/high voltage on-wafer testing and characterization; (e) die attach and wire bonding; and (f) final high temperature optimized packaged products


and SiC, rather


SiC SJT.There is no difference in switching speed between 25 °C and 250 °C,due to the unipolar nature of the SJT device design


large initial dynamic gate currents rapidly charge and discharge the device input capacitance, yielding faster switching performance. We recorded temperature- independent, ultra-low drain current rise and fall times of just 12 ns and 13 ns, respectively, for switching 8 A and 800 V by the 4 mm2


SJT (see Figure 3).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136