This page contains a Flash digital edition of a book.
industry  SiC electronics


Exploiting the high temperature promise of SiC


Replace silicon diodes and transistors with those made from SiC and the operating temperature of power electronics can soar to such an extent that bulky thermal management systems are no longer needed.The upshot: Squeezing grid-scale renewable energy inverters, downhole electronics and aerospace engines and actuators into far smaller spaces, says Ranbir Singh of GeneSiC.


E


ngineers searching for ever-increasing stealth in fighter jets, greater fuel-efficiency in airliners and vehicles, and compactness in grid scale solar inverters are united in one ambition: To throw out liquid- cooling loops, because this trims the size, weight, volume and cost of the electronic systems.


In all these applications, consumption and generation of electrical power occurs at different voltages and currents. For example, solar panels generate a low- voltage DC output, but this must be transformed into a high-voltage AC output before it is fed into the grid. This conversion process takes place in electronics circuits built from power semiconductors and passive components, such as inductors and capacitors. Electrical conversion is not 100 percent efficient, with losses converted into heat, which must be managed to ensure that these systems function optimally. Often, the thermal management apparatus is bigger than the circuits – and this difference is even more pronounced when the entire circuit operates in a high temperature environment. This means that the temperature tolerance of these components plays a critical role in determining the size and weight of these systems.


When power semiconductors operate at high temperatures, increases in leakage currents at high operating voltages tend to limit system performance. A high leakage current can result in unacceptable levels of power loss, or device failures by thermal runaway, a vicious spiral of over-heating and higher leakage currents. In high- voltage-blocking pn junctions, these leakage currents are directly proportional to the intrinsic carrier


March 2012 www.compoundsemiconductor.net 33


concentration in the semiconductor. This concentration is several orders of magnitude lower in GaN and SiC than it is in silicon, which is why these wide bandgap materials hold tremendous promise for making high- temperature devices with incredibly low leakage currents.


Ideally, GaN power devices would be built on a native substrate. However, GaN substrates are very pricey, so foreign substrates such as sapphire, SiC and silicon must be used instead. Although this trims costs, hetero- epitaxial growth creates high levels of crystal defects, which are to blame for the high leakage currents in devices biased to high voltages. As operating temperatures increase, this leakage current grows exponentially, preventing GaN devices from operating at reasonably high junction temperatures.


SiC does not suffer from the same fate, because affordable native substrates are widely available. This has spurred many companies to develop SiC


Power electronics is needed in many different regions of a more-electric aircraft


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136