search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Cryo-EM reveals Key Insight into Vital DNA repair process


Scientists at the University of Glasgow have revealed key insights into a vital DNA repair process which is implicated in resistance to cancer treatments, using cryo-electron microscopy.


Led by the University of Glasgow the research [1] is based on data and models collected from the Scottish Centre for Macromolecular Imaging (SCMI) and was conducted with colleagues at the University of Dundee.


The study looks at a toxic type of DNA damage called inter-strand crosslinks, which is normally repaired through a process initiated by a single molecule of ubiquitin – a protein commonly found in humans, animals and plants – being attached to each of the affected strands of DNA. In order to complete the DNA repair process the ubiquitin molecule must also be successfully removed from the damaged site – a process known as deubiquitination.


Now, for the fi rst time, researchers are able to show at a molecular level, the exact snapshot in time when the ubiquitin molecule is about to be removed by the targeting enzyme USP1 (Ubiquitin carboxyl-terminal hydrolase). To do this scientists used the cutting-edge electron microscope at the SCMI and with the data are now able to understand how this complex process occurs.


Credit: University of Glasgow


Understanding how USP1 interacts with ubiquitin during the removal process is considered to be scientifi cally important and opens the door to further research in the area that could have impacts on cancer and other diseases. In cancer cells, effi cient functioning of USP1 can help repair any damage caused by drug therapies, thereby making treatment of the disease less successful. As a result, USP1 has been identifi ed as a potential drug target for overcoming cancer resistance to treatment.


Professor Helen Walden, lead author of the study and professor of structural biology at the University of Glasgow, said: “The developments in cryo-EM over recent years have revolutionised structural biology, and we are really excited to capture this important complex, and how this will allow us to understand the DNA repair on a deep molecular level.”


The new £5 million SCMI is hosted by the University of Glasgow and is part of the Medical Research Council-University of Glasgow Centre for Virus Research (CVR) and is the result of collaboration between researchers from Glasgow, Edinburgh, Dundee and St Andrews. As a structural biology centre, it is home to a cutting-edge electron microscope – the fi rst of its kind in Scotland – which will be used to image biological molecules at the atomic level.


The work is funded by the European Research Council and the Medical Research Council (MRC). 1. Published in Nature Structural Biology. More information online: ilmt.co/PL/DzKL


55150pr@reply-direct.com


Structural Kinks Create Smart Components


Physicists at the University of Sussex have discovered that the tiniest microchips yet can be made from graphene and other 2D-materials. By creating kinks in the structure of graphene, the researchers made the nanomaterial behave like a transistor and have shown that when a strip of graphene is crinkled in this way, it can behave like a microchip, being around 100 times smaller than conventional microchips.


Professor Alan Dalton in the School of Mathematical and Physical Sciences at the University of Sussex, said: “We’re mechanically creating kinks in a layer of graphene. It’s a bit like nano-origami.


“Using these nanomaterials will make our computer chips smaller and faster. It is absolutely critical that this happens as computer manufacturers are now at the limit of what they can do with traditional semiconducting technology. Ultimately, this will make our computers and phones thousands of times faster in the future.


“This kind of technology; ‘straintronics’ using nanomaterials as opposed to electronics – allows space for more chips inside any device. Everything we want to do with computers – to speed them up – can be done by crinkling graphene like this.”


Dr Manoj Tripathi, Research Fellow in Nano-structured Materials at the University of Sussex and lead author on the paper, said: “Instead of having to add foreign materials into a device, we’ve shown we can create structures from graphene and other 2D materials simply by adding deliberate kinks into the structure. By making this sort of corrugation we can create a smart electronic component, like a transistor, or a logic gate.”


The development is a greener, more sustainable technology. Because no additional materials need to be added and because this process works at room temperature rather than high temperature, it uses less energy to create.


The research was published in the ACS Nano journal. More information online: ilmt.co/PL/24nJ


54805pr@reply-direct.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196