search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Mass Spectrometry & Spectroscopy


Ultra-low Level Analysis of Dioxins in Food using a triple quadrupole mass spectrometer (MS/MS) with Boosted


Effi ciency Ion Source Masato Takakura1


and Eberhardt Kuhn2 1


Masato-t@shimadzu.co.jp 2


Shimadzu Corporation, Analytical & Measuring Instruments Division, Kyoto, 604-8511, Japan, +81-75-823-1334; Shimadzu Scientifi c Instruments, Marketing Department, Columbia, MD 21046, USA, +1-410-910-0910; erkuhn@shimadzu.com


Dioxins are a class of very toxic compounds found throughout the world in the environment. Equipment sensitivity is of great importance for the analysis of low concentrations of these highly-toxic compounds. Historically, analysis and detection of dioxins was done with magnetic sector-type high-resolution mass spectrometers (HRMS). However, in recent years, the performance of triple quadrupole mass spectrometers (MS/MS) has improved signifi cantly. In addition, the development of the Boosted Effi ciency Ion Source (BEIS) offers compound-specifi c sensitivity up to 4 times greater than previous ion sources and provides accurate quantitation of dioxins at levels comparable to HRMS. Detection limits as low as 20 fg for Tetrachlorodibenzo-p-dioxin (TCDD) were achieved. In this study, we analysed dioxins in about 250 samples of approximately 40 types of food and animal feed products using a GC-MS/MS with BEIS. Quantitation performance was evaluated by comparing the analysis results obtained by GC-HRMS and GC-MS/MS. We also evaluated the number of analyses possible while maintaining sensitivity at low concentrations in order to verify the durability of the GC-MS/MS instrument.


Introduction


Dioxin and Furan are the frequently used short names for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) [1]. They belong to a group of toxic compounds known as Persistent Organic Pollutants (POPs) because they take a long time to break down in the environment. As such, dioxins are highly toxic to humans [2]. They are unwanted by-products of a wide range of manufacturing processes, including smelting, chlorine bleaching of paper pulp, and waste incineration. In nature, dioxins can be created by forest fi res and volcanic eruptions.


PCDD/Fs have long been an environmental concern. Due to their tendency to accumulate in biological tissues and their toxicity to biota, PCDD/Fs have received more widespread concern and have recently fallen under the scrutiny of the global food community.


At the same time, because of their extremely low level, they have been used as one of the benchmarks for evaluation the performance of the analytical instruments. In this study, seventeen congeners of dioxin were analysed by GC-MS/MS (Model GCMS-TQ8050 NX, (Shimadzu Corporation) in combination with Boosted Effi ciency Ion Source (BEIS). The developed instrument method was applied to real sample analysis, and the results (on a TEQ level basis) from the GC-MS/MS were consistent with results from GC-HRMS. The latter is the traditional method for analysis of dioxins [3, 4]. Durability of the instrument and ruggedness of the method was also evaluated with no decrease in sensitivity observed after more than 500 samples at low concentrations.


By optimising the focal point of the electron beams, the rate at which electron collide with the molecule is increased. Although the same number of electrons are produced by the fi lament, the ionisation rate is increased. This enables up to four-times higher sensitivity compared to previous ion sources. However, depending on the actual usage, the lifetime of the fi lament may be slightly shortened.


Materials and Methods Samples and Analysis Conditions All food and feed samples were prepared using automatic


BEIS was developed (Shimadzu Corporation) to maximise ionisation effi ciency through optimising the focal point of the electron beam in EI ionisation. This image illustrates the principle of BEIS:


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196