search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Chromatography


The use of a Reverse Phase (C18AQ) Flash


Chromatography Cartridge in Sample Desalting Cong Zhang1


, Bo Xu1 , Andre Couture2 *


1: Santai Technologies Inc., 78 Qingyang Road, Xinbei District, Changzhou, Jiangsu Province, 213125, China 2: Santai Science Inc., 214 Brunswick, Pointe-Claire, Montréal, QC H9R 1A6, Canada *Corresponding Author: andrecouture@santaitech.com


Reversed phase liquid chromatography (RPLC) is a widely used separation mechanism in liquid chromatography. RPLC has been used to separate numerous compounds, from organic acids with a low molecular weight (MW) to proteins with a MW of up to 150 kDa. However, analytes with good water solubility (i.e., hydrophilic or polar) exhibit poor retention on conventional C18 RP columns. In this case, the aqueous ratio in the mobile phase needs to be increased in order to enhance the interaction between the polar analyte and the hydrophobic stationary phase, thereby increasing the retention of polar analytes. The greater the polarity of the analyte, the higher the proportion of water required in the mobile phase. When regular alkyl bonded reversed phase columns e.g. octadecyldimethylsilane (ODS, C18) are used in pure aqueous or highly aqueous mobile phases for a long time, problems can occur including loss in retention time for the analyte and irreproducible separation results. This phenomenon is referred to phase collapse [1]. The classic explanation for this phenomenon is that the C18 stationary phase bonded to the surface of the silica gel changes the spatial arrangement of the carbon chain in highly aqueous mobile phase, that is, changes from perpendicular to the surface of the silica gel to lying fl at on the same plane as the silica surface (as shown in Figure 1). The change in the spatial arrangement of the stationary phase reduces its interaction with the analyte, thus reducing the retention time of the analyte and often causing it to be unretained.


case, the mobile phase no longer remains in the porous space of the stationary phase particles, so the chance of the stationary phase and the analyte coming into contact with each other is also reduced, which in turn causes the reduced retention time of the analyte. An experiment confi rmed that when the mobile phase in the C18 column was suddenly switched from a high proportion of organic solvent to 100% aqueous solvent, the volume of the mobile phase in the column was signifi cantly reduced, and the magnitude of the decrease in such volume was closely related to the loss of retention time for the analyte [3, 4].


Figure 1. Illustration of the classic explanation of phase collapse in reversed phase chromatography (reproduced from Ref.1). Shown are the confi gurations of long-chain bonded alkyl phases (a) in water- methanol mixtures and (b) in 100% water.


Researchers have conducted in-depth studies of the phase collapse phenomenon. The continuous accumulation of experimental evidence has led many researchers to accept another new theoretical explanation, that is, the loss in retention time is actually due to the ‘dewetting’ which occurs in the fi ne pores of the stationary phase particles [2]. In the new theoretical explanation (Figure 2), a high surface tension is generated between the aqueous mobile phase and the surface of the hydrophobic stationary phase. Therefore, the mobile phase is easily expelled from the porous space of hydrophobic stationary phase. In this


Figure 2. Illustration of a possible mechanism of pore dewetting for reversed phase chromatography (reproduced from Ref. 1). The analytes are properly retained when the alkyl chains on the stationary phase are properly solvated with pressure using a 100% aqueous mobile phase (a). When the fl ow has been stopped to allow expulsion of water from the pores, with fl ow resumed the pores are still dewetted and analytes cannot enter pores and have little or no retention (b).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196