search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Laboratory Products


Energy Effi cient Autoclaves -


Misconceptions and Misunderstanding Gareth West, Astell Scientifi c Ltd


Autoclave manufacturers are keen to espouse their green credentials and inform us of how their devices use less energy, but is it possible to make the radical savings that are claimed? Not always. Sterilisers are fi nely-tuned devices, and producing maximum results with minimum impact is often a question of balance.


To understand the energy effi ciency capacity of autoclaves it is crucial to begin by pinning down the essentials: what an autoclave must be to work as it should.


Back to basics - How does an autoclave work?


An autoclave is essentially a highly refi ned tool built for a specifi c job: sterilisation. The goal is to kill all biological life and deactivate biological agents placed within autoclaving chambers, typically by raising their temperature to 121°C for 15 minutes or more [1, 2] (although shorter processes at higher temperatures are also possible [3]). Reliably maintaining and measuring these temperatures is essential for achieving and validating sterilisation, and fl uctuations below the sterilisation temperature invalidates the process, requiring it to be repeated.


For sterilisation to be effective, a fl uid substance must fi ll the autoclave chamber and transfer heat to everything within it. Frequently, this means using steam with specifi c qualities. Pure steam gas that contains no liquid water – known as dry steam – is a poor conductor of heat and ineffective at steam sterilisation [4]. Dry saturated steam that carries 5% by mass of liquid water (or has a dryness fraction of 0.95) is the most effective fl uid for transferring heat to a load within an autoclave. Any dryer and the heat is not effectively transferred to the load, any wetter and the loads will be sodden.


As Anders Celsius eternally reminds us, the boiling point of water is 100°C at standard temperature and pressure (STP), so to reach minimum sterilisation temperature autoclaves must create conditions that make the boiling point of water higher. By raising the pressure in a sealed environment, the boiling point of substances within that environment is also raised (see Figure 1). For example, raising the pressure within an autoclave chamber to 2.068 Bar(a) will cause water to boil at 121°C, while increasing pressure to 2.896 Bar(a) will create an environment in which water boils at 132°C.


To sterilise effectively, both a sealed pressurised environment greater than 2.068 Bar(a) and a temperature of greater than 121°C are required. An autoclave must be able to both withhold these internal temperatures and pressures, and generate dry saturated steam from water (usually via electrical energy).


The invariability of steam generation.


Dry saturated steam generation from water is an inevitable starting point for investigating autoclave energy use. At STP, water requires 2,619 kilojoules of energy per kilogram (kJ/kg) to become dry saturated steam. If the environment in which the steam is produced is at higher pressure, the quantity of energy needed to convert water to steam is less. At the minimum sterilisation temperature and pressure (121°C and 2.068 Bar(a)), 2,619 kJ/kg are required to generate dry saturated steam from water. This process will create steam that will fi ll a 0.841m3


space per kilogram of water used. These are the physical,


unchanging properties of H2O, and provide the limitations on how energy effi cient an autoclave can be.


In the hypothetical ideal autoclave (that wastes no energy) the initial volume of water used to generate steam is the only variable that affects energy consumption. The smallest possible volume of water in the steam generator provides the most energy effi cient system – if water requires a specifi c quantity of kilojoules per kilogram to convert it to steam, the only way to reduce the energy usage is to reduce the mass (and volume) of water (see Figure 2).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196