Air Monitoring
Cloud Formation and Rainfall Affected more Dramatically than Thought by Pollutant Oxidation of Biodiesel Emissions
A study into how organic molecules in the atmosphere affect cloud formation has found that a main component of biodiesel, methyl oleate, reacts with ozone surprisingly fast. This process may counterbalance the growth of water droplets resulting from emissions, which would in turn inhibit cloud formation and therefore affect the water cycle in a highly complex way.
The research, published in the journal Physical Chemistry Chemical Physics, was performed by an international team of scientists working at the ILL (Institut Laue-Langevin) in Grenoble, France.
Methyl oleate is an organic material that is being produced in larger amounts today due to the increasingly popular FAME (Fatty Acid Methyl Ester) biodiesels. The widespread use of these materials potentially raises their concentration in the atmosphere. They accumulate naturally on the surface of water, and therefore can lower the surface tension of water droplets. Such surfactants are important in cloud formation as the reduced surface tension allows droplets to grow larger, producing clouds and rainfall. Without any surfactants at all these droplets could only grow large enough to form clouds higher up in the atmosphere.
The team performed neutron refl ectometry experiments on the powerful FIGARO instrument at the ILL where intense beams of neutrons were skimmed off single layers of methyl oleate molecules fl oating on water as they were exposed to gas phase ozone. Measurements of the intensity of refl ected neutrons during the reaction allowed the scientists to determine how the concentration of the molecules on the surface changed over time and therefore how susceptible this organic material was to oxidative attack.
The research used neutrons to address two important questions - how quickly the oxidised methyl oleate was lost from the air-water interface and if the products of methyl oleate remained on the surface of the droplet, entered the water or evaporated into the air.
The study found that the methyl oleate degraded ten times quicker than oleic acid, a molecule found in the atmosphere generated from cooking meat. It also showed that the initial surfactant layer at the air-water interface was effi ciently eradicated from the surface when exposed to ozone. The mechanism was attributed to the reaction of ozone with a carbon- carbon double bond in methyl oleate, breaking its backbone and thus shearing the molecule in half. This oxidation reaction causes the methyl oleate almost to lose completely its surfactant properties. In the atmosphere this would result in water droplets growing more slowly.
“Neutrons showed that that the surfactant disappears from the air-water interface surprisingly quickly” said Reading University’s Dr Christian Pfrang, the lead author of the paper. “The surfactant isn’t stable at the surface in the presence of ozone which means surface tension is increased and droplet growth could be slowed down, making it more diffi cult to form clouds. Furthermore the products aren’t stable at all at the droplet surface and this would not have been predicted from the results of previous studies.”
Richard Campbell, instrument leader, said “The ILL is the world leading neutron facility for kinetic studies due to its very stable and intense reactor source, and FIGARO is the optimum neutron refl ectometer in the world where this research can be performed due to its very high intensity for surface excess studies. We were able to take scans every one to fi ve seconds - necessary for the timescales we were working with - whereas instruments at other facilities would generally require much longer. This capability allowed us to reveal the reaction mechanisms of an oxidation decay of an organic monolayer with greater time resolution and sensitivity than ever before.”
The next step in the research is to examine the behaviour of different surfactants and their mixtures when exposed to ozone and other oxidants found in the atmosphere. “We’re combining neutron refl ectometry with computational modelling” said Federica Sebastiani, an ILL PhD student who worked on FIGARO. “We have models to examine more complex systems with multiple surfactants and we’re going to look at these systems in greater detail than ever before.”
For More Info, email: email:
For More Info, email: email:
30251pr@reply-direct.com Casella STORM Guardian
Remote rainfall monitoring made simple
For More Info, email: email:
When contacting companies directly from this issue of International Environmental Technology
please tell them where you saw their product.
Thank you Measure Series 9100 Online Gas Chromatograph
VOC’ s including: (BTEX) Benzene, Toluene Ethylbenzene & Xylene Vinyl Chloride Butadiene many others....
Protect Analyze
For More Info, email: email:
GreenLight® Environmental Rapid Microbial Detection
Combined Sewer Overflow Beaches Fracking Drinking Waste Water
Series 9000 Hydrocarbon Analyzers
9000 THA - Total Hydrocarbons 9000 NMHC - Methane / Non-Methane 9000H - Heated Hydrocarbons
www.casellameasurement.com Contact us now for more details:
Key Features
• Fully integrated system • GSM/GPRS Telemetry • Email & Text alarms (optional) • Up to 7 years battery life • Ultra low power, no need for solar panels
37
info@casellameasurement.com – Tel: +44(0) 1234 847799
1167ad@reply-direct.com
We have the solution for your application
For More Info, email: email:
For More Info, email: email:
P: 303.823.6661 E:
info@baselineindustries.com
www.baselineinc.com
2051ad@reply-direct.com
www.envirotech-online.com IET Annual Buyers’ Guide 2014/15
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148