transmission of usa300 latin american variant 883
and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010;50:133–164.
9. Lopez-Cerero L, Picon E,Morillo C, et al. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin- clavulanate and piperacillin-tazobactam with extended-spectrum β-lactamase-producing and extended-spectrumβ -lactamase-non- producing Escherichia coli 2010;16:132–136.
isolates. Clin Microbiol Infect
10. Tamma PD, Girdwood SC, Gopaul R, et al. The use of cefepime for treating AmpC β -lactamase-producing Enterobacteriaceae. Clin Infect Dis 2013;57:781–788.
Transmission of ST8-USA300 Latin American Variant Methicillin-Resistant Staphylococcus aureus on a Neonatal Intensive Care Unit: Recurrent Skin and Soft- Tissue Infections as a Marker for Epidemic Community-Associated- MRSA Colonization
To the Editor—We report a mother-to-newborn transmission of ST8-USA300 Latin American Variant methicillin-resistant Staphylococcus aureus (MRSA) on a neonatal intensive care unit during kangaroo mother care in a German University Hospital, which raises the question of whether recurrent skin and soft-tissue infection (SSTI) is an important marker for colonization with epidemic MRSA clones. The clonal expansion of the particularly virulent MRSA strain pulsotype USA300 is much dreaded. USA300 is the pre- dominant MRSA clone circulating in the community in the United States, and it is recognized as a common cause of nosocomial S. aureus bloodstream infections, increasingly blurring the classic distinction between community- and hospital-associated MRSA.1 A variant of this virulent strain, designated as the Latin American Variant of USA300 MRSA (USA300-LV), was able to infiltrate, disseminate, and become the predominant MRSA in the community as well as in healthcare settings across most of Latin America.2 Although international travel and migration fosters the
global spread of S. aureus,3,4 detection of USA300-LV in Europe is rare1,3 and generally occurs in subjects with close family or travel links to Latin America.3 Nevertheless, the first observations of its autochthonous spread in the community have been reported in Spain and Italy.1 To date, in-hospital transmission of USA300-LV is an entirely unknown phenomenon in Europe, in contrast to Latin America, where it accounts for a substantial proportion of the nosocomial MRSA infections in Columbia and Uruguay.1,2 In October 2016, preoperative screening revealed Panton- Valentine leucocidin–positive (PVL+) MRSA isolated from a
nasal swab of a 16-day-old, premature newborn (gestational age 33 weeks 2 days; 1,360 g) that had been hospitalized since birth due to a congenital heart anomaly (index case) (Table 1). Two days later, MRSA was also detected in the nose and breast milk of the mother, who at that time provided kangaroo mother care (ie, skin-to-skin care) to her child on a daily basis.5 Because a postpartum screening of the child had been negative for multidrug-resistant organisms and because no other patients with MRSA colonization or infection had been treated on the same unit at that time, transmission from the mother is the most likely source of USA300-LV in the new- born. This finding is in line with research from Japan that found kangaroo mother care on the neonatal intensive care unit (NICU), although perceived to protect against infectious disease outcomes by increasing the diversity of the baby’s microbiome,5 to be associated with 3.82-fold increased odds of MRSA infection (95% confidence interval, 1.11–13.13).6 Searching for the source of MRSA, a medical history among
family members revealed recurrent SSTIs in the father and the 4-year-old sister of the index case patient. Swabs of the father’s nose and from a resolving purulent SSTI on the sister’s leg screened positive for PVL+MRSA. Although decolonization measures were immediately initiated, the mother’s cesarean section wound became infected and PVL+MRSA USA300-LV could be cultured from the wound and stitch on day 24 after birth. All family members received immediate MRSA eradication treatment according to the institutional protocol. The child was isolated for the rest of the hospital stay. Active screening did not detect transmissions to other patients on the same ward. No further cases of MRSA infection have occurred on the NICU unit since October 2016. All strains isolated were of the spa type t008 (ST8), PVL
positive, arginine catabolic mobile element (ACME) negative and bear the SCCmec type IVc, which is consistent with the ST8-USA300-LV MRSA clone. None of the family members reported significant travel outside Europe in the last 24 months, in particular, not to the United States or Latin America. However, the father of the index case had returned from a trip to Spain more than 12 months previously and prior to suffering from recurrent SSTI. Among other risk factors, current guidelines recommend screening of intercontinental travelers and patients with active skin infections, prior hospitalization, or contact to patients carrying multidrug-resistant organisms (MDRO) for carriage of MDRO upon admission.7,8 In the presented case, the mother of the index patient did not fulfill any of the locally implemented criteria and was thus not screened on admission for C-section. Hence, to increase the sensitivity of CA-MRSA detection in the future, we propose targeted screening of all patients reporting recurrent SSTI defined as 2 or more episodes within the last 12 months in either (1) themselves or (2) members of the same household. This rationale is sup- ported by reports on (1) recurrent skin infection being linked
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136