search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
antibiotic outbreak prediction with excel 861


figure 1. Linear regression of piperacillin-tazobactam consumption (DOT/1000 PD) in the medical intensive care unit as the y-axis from the period from January 2012 to December 2015 as sequential months from 1 to 48 (x-axis). Dashed lines represent upper and lower bounds of the 95% confidence interval. Solid lines represent upper and lower bounds of the 80% prediction interval. The latter is suggested to predict periods of potential under- and overuse.


table 1. Derivations of Equation From the Supplemental Materiala Equation Set 1 1.1b Linear prediction value obtained from regression


1.2c Standard error of the mean for the given month


1.3 Standard error of the predicted y value for each x in the regression


1.4 Standard deviation for the given month 1.5d,e Upper bound 95% confidence interval 1.6 Lower bound 95% confidence interval


Equation Set 2 2.1 Standard error of prediction


2.2 Upper bound 80% prediction interval 2.3 Lower bound 80% prediction interval


ŷ=FORECAST(month,antibiotic_DOT_1000_PD,T)


SEM=steyx_drug*SQRT(1/COUNT(Analysis_period)+((month-AVERAGE (MonthsTotal))^2/devsq_ Analysis_period))


steyx_drug =STEYX(antibiotic_DOT_1000_PD, Analysis_period) devsq_ Analysis_period =DEVSQ(Analysis_period)


95% CI_UB =ŷ+TINV(0.05,COUNT(Analysis_period)-2)*SEM at that month 95% CI_LB=ŷ - TINV(0.05,COUNT(Analysis_period)-2)* SEM at that month


SE of Prediction =steyx_drug*SQRT(1+(1/COUNT(analysis_period))+((month- AVERAGE(analysis_period))^2/devsq_analysis_period))


80% PI_UB =ŷ+TINV(0.2,COUNT(analysis_period)-2)* SE of Prediction 80% PI_LB=ŷ - TINV(0.2,COUNT(analysis_period)-2)* SE of Prediction


NOTE. DOT, days of therapy; PD, patient days; T, time; SEM, standard error of the mean; SQRT, square root; DEVSQ, squared deviation of the sample mean; TINV, inverse of the two-tailed Student t distribution; PI_UB; upper bound 80% prediction interval PI_LB, lower bound 80%


prediction interval; SE, standard error. aEquation set 1 includes the formulae needed to construct a simple linear regression model using the FORECAST function with DOT/1,000 DP as the dependent variable and time as the independent variable. This calculates mean linear predictions for consumption data across ordered time months, with variability quantified as standard error of the mean (SEM) and attendant 95% confidence intervals at each time point. Equation set 2 includes the formulae needed to calculate standard errors of predictions and attendant 80% prediction intervals at each


time point. bMonth is a single numeric value when months are numbered sequentially. cAnalysis_period is the total time of analysis. dTINV is the 2-tailed inverse of the Student t distribution: the first number following TINV is the probability associated with the 2-tailed Student


t distribution and the second number following it is the degrees of freedom. eThe COUNT -2 function is used to determine the needed degrees of freedom.


confidence interval for the mean (rather than any individual single prediction).7 Values above or below the prediction interval serve as a decision support tool for the investigation of


antibiotic over- or underuse. Upper and lower bounds of these predictive intervals were calculated using standard errors of predictions (see Table 1, equation set 2).8,9


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136