This page contains a Flash digital edition of a book.
ets, evaluate on a statistical basis the corresponding status reports of the diecasting machine and allow the provision of key information to a team of experts for analysis.


Downtime Increases the Energy Consumption per Good Part


Even if the machine is idling temporarily, the molten


product must continue to be kept warm and all required subassemblies must be kept in standby mode. Currently, up to 60 percent of the power consumption accrues dur- ing regular production even though the machine is not producing. As a result, all of the good parts manufactured have to help bear the costs of these “stand-by losses.” In other words: higher overall equipment effectiveness reduces the energy consumption per good part. It becomes clear that improving the OEE has an unequal effect on part costs than exclusively optimizing the energy efficiency of the producing diecasting cell itself. A simplified calculation model shows the percentage of influence an improved OEE has on the energy consump- tion or manufacturing costs, respectively (Fig. 5a). By comparison, the identical calculation can be redone for improving energy efficiency.


Modelling Provides the Basis of Decision-Making Starting with an hourly rate of the machine, that takes


into account the fixed costs to be expected and the actual energy costs, the model shows how the total costs to be borne for a good part are reduced by increased availability of the system: a 15 percent improvement of the OEE shown in this example affects the manufacturing costs ten times more than simply reducing the energy consumption by 15 percent. By varying the parameters of the model, the influence of a clear reduction of the stand-by energy con- sumption can be simulated (Fig. 5b). Tis decreases the influence of increased system availability on the reduced energy consumption. However, the ratio of the cost sav- ings remains the same. Using this kind of modeling provides an answer to the question of whether the goal of reducing costs means an investment in new, lower energy consuming system components or, alternatively, in measures to increase the availability of an existing installation.


Availability and Energy Efficiency The ever increasing cost pressure continuously


calls for innovation, including for diecasting. The use of more energy efficient diecasting machines plays an important role in lowering costs. The VDMA standard cycle for diecasting machines has made them comparable. Furthermore, the improved overall equipment effectiveness has an even more signifi- cant impact on the balance sheet for total costs per manufactured good part. A significant increase in productivity and decrease in costs can be achieved with an appropriately matched, preventative package of services. 


设备状态报告进行评估,并且可以将关键信息提供 给专家组进行分析。


停机时间增加每个合格铸件的能耗


虽然设备是临时怠机状态,但金属液必须保持温 度并且所有的后续设备必须处于待机模式。目前,即 使在设备未生产的状态下,正常生产中累积的电能消 耗已高达60%。因此,所有的合格品必须承担待机损 耗产生的成本。也就是说,较高的设备综合效率可以 降低每件合格品的能耗。


显然,与仅优化压铸生产单元的能效相比,提高 设备综合效率(OEE)对铸件成本的影响不同。简化 的计算模型分别指出了提高的设备综合效率(OEE) 对能耗或生产成本的影响百分比(图5a)。通过对 比,可以重复进行同样的计算以提高能效。


模型为决策提供依据


从设备的每小时生产率开始,并对预期的固定成 本和实际的能源成本加以考虑,该模型表明如何通过 提高系统利用率降低生产一个合格铸件所需承担的总 成本:例如,设备综合效率提高15%,对生产成本 的影响是仅降低15%的能耗的10倍。通过改变模型 的参数,可以模拟出怠机能耗减少所产生的影响(图 5b)。结果是削弱提高的系统利用率对减少能耗的 影响。然而,成本节约的比例仍保持不变。 采用这种模型对这一问题给出了答案,即是用以 投资新的低能耗系统设备,还是提高现有设备利用 率。


系统利用率和能效


不断上涨的成本压力要求持续的创新,压铸行业 同样如此。使用能效更高的压铸设备,对降低成本具 有重要作用。德国机械设备制造商联合会为压铸设备 制定的标准循环使能效可以进行对比。此外,提高的 设备综合能效对每个合格铸件的生产总成本控制有很 大的影响。采取适当针对性和预防性的打包服务可以 显著提高生产率和降低成本。 


52 | FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION June 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98