This page contains a Flash digital edition of a book.
product news/產品新聞


patent-pending variable fragmenting technology, gives us- ers the power to control aggression in the supersonic flow region of the nozzle. Cold Jet’s design significantly improves reliability because fragmenting occurs downstream for clog- free operation. Te Aero 40 also reduced the problem with high noise


volumes due to the multilayer insulation and the reduced volume flow rate of the nozzle. “We measured the noise level of the old and new unit,” said Gläsle. “Directly at the site of dry ice blasting at one of our core support center, the noise level with the Cold Jet system is reduced from 104 to 95 dB(A). In the adjacent work area near the casting robot, the noise level is decreased from 93 dB(A) to 82 dB(A). Simultaneously at this work- place, we no longer need to wear earplugs when using the dry ice cleaning equipment.” Another advantage of the Aero 40 is that the dry ice and


air supply can be controlled individually. Te dry ice flow rate from 0 to 1.8 kg per minute can be adjusted. Te com- pressed air flow volume is adaptable to the blasting task in a range from 1.4 to 6.1 cubic meters per minute. “Due to these possibilities, we were able to significantly


reduce our dry ice and compressed air consumption from 6 to 4 bar and tune the system exactly to our requirements,” said Gläsle. “Cold Jet’s Aero 40 machine has greatly in- creased our efficiency with core box cleaning.” 


问题,还减小了喷嘴的体积。


“我们测量了老的和新系统的噪音水平,”Gläsle 说:“可以直观看到,在我们的芯盒维护在中心的 干冰喷射区域,采用Cold Jet系统的噪音水平从104 分贝降低到95分贝。在与铸造机器人临近的工作区 域,噪音水平从93分贝降低到82分贝。同时,在工 作车间使用干冰清理设备时,我们不需要再佩戴耳塞 了。” Aero 40的另一个优势是,干冰和空气供给可以分 别控制。干冰流速可从0-1.8kg/分钟进行调整。压缩 空气流量可根据喷砂任务在1.4-6.1 m3 整。


/分钟进行调


“由于这些可能性,我们能够大幅降低干冰和压 缩空气的消耗量,从600Kpa减少到400Kpa,并且 严格按照要求调试系统,”Gläsle说:“Cold Jet 公司Aero 40设备已经显著提高了芯盒的清理效 率。” 


Solutions for Heat Recovery During Extraction Processes 空气交换时热量回收的解决方案


As enforced by regulations, emissions escaping during


working processes within metalcasting facilities must be collected to the greatest possible extent, and the off-gas must be extracted through a filtration plant for the separation of impurities. As a result of highly efficient suction systems, the volume flows extracted from the plants are kept as low as possible. However, it is not uncommon for extraction flows of several 100,000 m³/h to be required. Tese large volume flows extracted from the halls have to be replaced by ambi- ent external intake air. Particularly during winter months, this can create considerable heating costs. As an example, for an outdoor temperature of 0C the required heating capacity lies in a range of 75 kW/104 m³/h. To avoid these increased heating costs completely and/or to minimize the costs, LU- EHR FILTER offers different solutions for foundries. Direct recirculation of air after cleaning in a filter is used


for the extraction of particle-laden air, charged without any further gaseous impurities or hazardous substances in the air (for example: casting or fettling). Te air cleaned in a fabric filter is directly introduced into the hall after passing a second polishing filter stage. Te quality of intake air cor- responds at least to the quality of ambient air. Another option is heating of ambient air through recu-


perative heat exchanger with the off-gas. During this process, the off-gas, which is extracted from the production process and charged with particles and other gaseous impurities


根据规定,铸造厂生产过程中产生的气体排放必须 在最大可能范围内进行收集,而且,废气必须通过过 滤装置分离污染物质。由于采用了高效的吸入系统, 车间内收集装置的空气流量可以保持尽可能的低速。 毕竟,每小时几十万立方流速的要求并不常见。抽取 如此大的流量必须用外部的吸入空气。尤其在冬季, 它将产生相当大的供热成本。例如,室外温度为0℃ 时,所需的热量为75 kW/104 m³/h。为了完全避免 供热成本的增加,或者降低成本,LUEHR FILTER为 铸造厂提供了不同的解决方案。


经过过滤器清理之后,直接再循环的空气用于含有 颗粒物的空气的抽取,不含有任何其他的气体杂质或 空气中的有害物质(例如:铸件和铸件清理)。经过 第二个阶段的抛光过滤后,纤维过滤器中清理过的空 气直接进入到设备中。吸入的空气质量至少与周围的 空气质量一致。


另一个选择是通过再生式热交换器加热废气周围 的空气。在这个过程中,从生产中(例如:铸造和冷


74 | FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION June 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98