This page contains a Flash digital edition of a book.
product news/產品新聞


design process. Together they present a technology demonstration that stands out with dramatic per- formance improvements and the solid potential for serial manufacturing and mass production. Bringing design optimization, fatigue analysis, casting, and 3-D printing together addresses the challenges of light- weight design and enables the creation of an innova- tive design and manufacturing process that enhances performance and efficiency. “When it comes to speed and capabilities for se-


rial production you might want to look at this pro- cess,” said Kevin Smith, director global applications, voxeljet. “It marks the ‘rebirth’ of one of the oldest manufacturing process available–casting. The new process includes molds made with 3-D printing, an entirely new approach to mold making. By using the voxeljet 3-D printing process, mold making is dra- matically faster. 3-D printing the patterns and molds, is potentially the only way we can achieve this level of cast complexity. To leverage the design freedom 3-D printing offers to full capacity, the design for the printed piece comes from simulation tools, which pro- vide structural inspiration and enable the assessment of manufacturability and durability. The result we have received is very promising: the component is now 3-5 times stiffer (depending on the load case) than the original design without having to add weight. Another great advantage of this approach is the manufacturing process is already well established, certified in various industries and suitable for mass production.” Using a milled billet aluminum upright (wheel


carrier) for a student racecar to demonstrate the process, designers and engineers from the companies focused on creating a new shape for the wheel carrier that would be equal in mass but perform significantly better than the original. The wheel carrying compo- nent is subject to deflections and deformations under load, which significantly impact the road-holding performance of the entire suspension. Stiffness of the component is critical. The original design, driven more by manufacturing needs, was now reworked for performance. First, the design space was defined using Inspire, a


concept design and optimization tool based on Altair’s OptiStruct optimization solver. Then the most severe load cases, such as hard braking, maximum cornering, and driving over bumps, were applied to the model. After running the optimization, which also took man- ufacturability into account, the result was a part with exactly the same amount of material (now aluminum cast) but distributed in such a way as to increase stiff- ness by a factor of 3-5, depending on the load case. Because fatigue damage is driven by the compo-


nent’s entire loading history and not just the maxi- mum load, a fatigue schedule of 35 hours of loading


打印技术制造创新性铸型的灵活性和模拟驱动设计 过程。他们合作提出了一项技术,特点是:显著改 善了批量制造和大规模生产的作业并使之具有很大 的潜力。将设计优化、疲劳分析、铸造和3D打印技 术结合起来,应对轻量化设计的挑战,从而促进了 提高性能和效率的创新设计和制造工艺的产生。 “涉及到批量生产的速度和产能问题,你可能需 要了解这一工艺,”voxeljet公司的全球应用主管凯 文•史密斯说:“它使最古老的制造工艺之一的铸造 工艺获得了重生。新的工艺包括采用3D打印技术( 全新的造型生产工艺)生产铸型。通过采用voxeljet 公司的3D打印技术,造型速度显著地快了。3D打 印技术可以打印模和型,是使铸件的复杂程度达到 这种水平唯一可能的方式。为了充分发挥3D打印 技术的设计自由度,打印件的设计方案来源于模拟 软件,它为设计提供了结构灵感并且能够对可制造 性和耐用性进行评估。我们得到的结果前景非常看 好:在不增加重量的前提下,铸件的刚性是以前的 3-5倍(根据负荷情况而不同)。该工艺方法的另一 个优势是:制造工艺已在各行业建立起来并得到认 证,且适用于大批量生产。


用铣削型材制成的铝合金学生赛车用支柱(轮 架)展示其工艺,公司设计师和工程师的工作重点 是制造新的轮架形状,质量上一样的,但性能比原 来的好很多。轮架件在负荷作用下产生挠曲、变 形,对整个悬挂系统的承载性能有显著的影响。铸 件的刚度是至关重要的。原始设计主要由生产需要 决定,现在重新设计则需着眼于性能。 首先,设计的空间由Inspire软件确定,该软件是 基于Altair(澳汰尔)公司OptiStruct优化处理器的 概念设计和优化工具。然后,将最苛刻的负载情况 应用于模型,例如急刹车、最大的转弯和颠簸路行 驶。优化还考虑到工艺性,优化完成后,其结果是 材料用量(现在是铝合金)几乎一样多,但是材料 的分布方式都是按不同的负载情况,使其刚性提高 3-5倍。


由于疲劳损伤受铸件整个负载过程造成的,而不 仅是最大的负载,因此,从5个不同的路况和35个小 时的负载绘制了疲劳时间表,并将其输入到nCode


84 | FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION June 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98