This page contains a Flash digital edition of a book.
duction environment and their relationship to a specific manufactured part. Companies like Bühler, that have the necessary know-how and corresponding measuring tech- nology, offer this information as a service to foundries. While it is quite easy to measure the electrical energy


required using an energy measuring device, measuring the compressed air consumption and cooling water treatment places considerable challenges for the measuring set-up. Calorimetric measuring devices are particularly well- suited to accurately measure compressed air consumption since they are able to capture the high gas speeds over a large measuring range with high process dynamics at the same time. Correct positioning of the measuring devices and taking the required calming section into consid- eration is essential to the quality of the results of the measurements. Ensuring the ongoing/regular produc- tion is not interrupted while the thermal energy is being measured often requires an additional mobile measuring section with calibrated temperature sensors and accurate flow metering. In order to describe the overall energy consumption, the individual values recorded can be converted to an equivalent, electrical energy consumption. Tis involves calculating conversion factors for compressed air and cooling water that are specific to the foundry based on local conditions. Tese factors describe the electrical energy required to prepare a standard cubic meter of com- pressed air, or a kilowatt hour of thermal energy, respec- tively. Furthermore, they heavily depend on the installed compressors and the type of cooling water treatment. Te results for a specific diecasting cell can be broken down in detail in an energy measurement report (Fig. 4) and add up to the amount of energy required for a specific part. Based on these results, it is then possible to make


targeted improvements to machine settings, to the spray- ing technology or to the cell concept—thus reducing the energy usage and, consequently, the costs per manufac- tured part.


Availability Influences Energy Efficiency In addition to the observations mentioned above, it is


worthwhile for casters to look at the overall equipment effectiveness (OEE) of their casting cells, since it directly affects the cost effectiveness of the plant. Te OEE is calculated as the product of the availability of the diecast- ing cell, the output ratio and the quality of the castings. Tis calculation also takes into account losses due to a machine’s longer cycle times due to downtime and the number of rejects. In this context, downtime of the cell components


are of particular interest. In order to show the dif- ference between possible and actual production time, they need to be evaluated in depth. In addition to the time for unplanned service, maintenance and repair work after technical failures, the downtime also includes organizational periods of inactivity, for example due to operating errors as well as lacking material or personnel. Specialized software pack-


系。像布勒这样的公司,具备必需的专业知识和相 应的测量技术,已将为铸造厂提供测量报告作为他 们的服务内容。


通过计量装置测量所需的电能是很容易的,但 压缩空气用量和冷却水处理量的测量有较大的难 度。量热装置对精确测量压缩空气消耗量特别适 合,能够在很大的测量范围内,以较高的过程动 态获取高速气流。要正确定位测量装置及考虑气 流平稳区,这对测量结果质量至关重要。在测量 时为了不打断正常生产,测量系统经常需要一个 附加移动装置,该装置带有已经校准的温度传感 器和精确的流量计。


为了对综合能耗做出描述,可以将所记录的每个 值转化为等价的电能消耗。这涉及到根据铸造厂特 定条件确定的压缩空气和冷却水的计算转换系数。 这些系数分别描述了制备一个标准立方米压缩空气 所需的电能或一千瓦时的热能。此外,它们在很 大程度上取决于所安装的压缩机和冷却水处理的类 型。一个特定压铸单元的能源测量结果可以在能源 测量报告中详细分解(图4),并累积得到生产某 个铸件所需的能量中。


在这些结果的基础上,可以对机器设置、喷涂技 术或者单元概念做一些有针对性的改进,从而,可 降低能耗并最终降低单件产品的生产成本。


系统利用率影响能效


除以上提到的发现以外,由于铸造单元的设备 综合效率(OEE)直接影响铸造厂的成本效益, 铸造厂对其进行观测也是值得的。设备综合效率 (OEE)等于压铸单元的利用率、出产率和铸件的 质量的乘积。该计算方法考虑了设备停机的较长时 间以及废品数所导致的损耗。


因此,铸造单元的停机时间是至关重要的。 为了显示可能的和实际的生产时间之间的差异, 需要对停机时间进行全面的评估。除计划外的服 务、技术故障所需的保养和修理导致的停机外, 还有组织结构性的停工,例如,由操作失误、材 料或人员短缺导致的停工。“布勒案例分析”专 业软件包,可以在统计学的基础上对相应的压铸


June 2015 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 51


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98