Flexibility, Automation in Small Metalcasting Facilities
Two case studies illustrate how automation can be implemented in a small metalcasting facility in order to react to today’s global manufacturing demands for quickly delivered customized parts.
RHYTHM WADHWA, NORWEGIAN UNIVERSITY OF SCIENCE & TECHNOLOGY-VALGRINDA, DEPARTMENT OF PRODUCTION & QUALITY ENGINEERING, TRONDHEIM, NORWAY
小型铸造企业装备的柔性化和自动化
为了应对目前全球制造业对于快速生产定制产品的需求,本文用两个案例分析说 明小型铸造企业装备是如何实现自动化的。
挪 威,特隆赫姆市,挪威科技大学生产与质量工程系Rhythm WadhWa I
n recent years, flexibility has attracted significant atten- tion from small to medium enterprises (SMEs) in metalcasting and academia due to varying customer demands and increasing competition. Changing operat-
ing conditions are forcing firms to be flexible in handling vari- ations in demand and product and uncertainty and changes in the environment. Such factors have affected manufacturing companies for a long time, but their influence has escalated during the past 20 years as a result of advances in manufactur- ing technology and demand for mass customization. Organizations, both large and small, require reconfigu-
rable equipment to produce one-of-a-kind or small batch quantities of customized products. Client demand for small volumes of customizable product leads to a paradigm shift in how effectively an SME, with 10-25 employees on aver- age, would operate to quickly and effectively deliver parts. Identifying best practices is a tricky process that is difficult to implement, which is more noticeable when the compa- nies are SMEs. Typically, SMEs have limited resources and knowledge of automation methodologies. To address this, the Norwegian Research Council started a project to test the concept of a shared flexible manufacturing environment tailored to metalcasting SME requirements. Te participating metalcasting consortium in the project
agreed to test part handling automation solutions at two metalcasting facilities in a living lab setting. Living labs began to emerge in early 2000, and the concept has since grown. A precondition in living lab activities is that they are used in a real-world context. During this living lab process, constant feedback for improvement was collected and trans- formed into a requirement list for the technology providers.
Case Study One: Flexible Robot Part Handling in an Iron Casting Facility
Preferring to remain anonymous, the iron metalcaster
年来,由于客户需求的变化和日趋激烈的竞 争,柔性生产已引起了中小型铸造企业和学 术界的很大关注。不断变化的经营环境迫使 企业灵活地应对产品以及需求的改变,以适应外部环境 的不确定性变化。这些因素对制造企业产生的影响已经 很久了,但是随着制造业的科技进步和定制产品的大量 需求,在过去的20年中这些影响日益显现。 企业无论大小,都需要使用可重新配置的设备为客户 生产唯一款式或小批量的定制产品。客户的小批量定制 产品需求使平均雇佣10-25名员工的中小型企业转变了 观念,他们将思考如何高效地运营,从而快速且有效地 生产部件。确定最佳的实践方案是个复杂的困难过程, 对于中小企业来说更加明显。一般情况下,中小企业的 资源有限,对于自动化的工艺方法了解较少。为了解决 这个难题,挪威研究委员会启动了一个研究项目:验证 符合中小型铸造企业要求的共享柔性生产环境理念。 参与该研究项目的铸造联盟同意在仿真实验室背景 下,在两个铸造企业测试铸件装卸作业自动化的解决方 案。仿真实验室的概念最早出现在2000年,并从此不 断发展。仿真实验室活动的前提条件是它们可用于真实 环境。在仿真实验室的项目进行中,研究人员收到了很 多完善服务的信息反馈,并转化成需求列表提交给技术 供应商。
近 案例分析1:铸铁厂使用柔性机器人装卸铸件
这家希望保持匿名的铸铁企业是家用木材火炉生产 商。该公司需要根据客户季节性的需求安排模具与生
60 |
FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION December 2015
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96