search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
82


Journal of Paleontology 90(1):78–91


In more recent global zonation schemes (Cramer et al., 2011; Melchin et al., 2012), there is a degree of uncertainty concerning the correlation of the expansa Zone to the graptolite zonation, although it is still found to span the Rhuddanian-Aeronian boundary. Pseudolonchodina expansa has also been reported fromCanada (Zhang and Barnes, 2002),Alaska (Dumoulin et al., 1997), Estonia (for references, see Männik and Malkowski, 1998), Poland (Männik and Malkowski, 1998), Russia (Männik et al., 2009), Australia (Simpson and Talent, 1995), and Spain (Sarmiento et al., 1994). The Distomodus kentuckyensis Zone is commonly assigned


to the strata below the first occurrence of Pseudolonchodina expansa, making D. kentuckyensis the lowermost Rhuddanian biozone in the global zonation scheme compiled by Cramer et al. (2011). Distomodus kentuckyensis has been reported from North America (for references, see Zhang and Barnes, 2002), the United Kingdom (Aldridge, 1972, 2002), Sweden (Dahlqvist and Bergström, 2005), Norway (Aldridge and Mohamed, 1982), and Russia (Zhang and Barnes, 2007b). It frequently ranges from the lowest Rhuddanian into the Aeronian. Distomodus kentuckyensis has been recorded across the Ordovician-Silurian boundary in Sweden (Bergström et al., 2012), and terminates before the first appearance of D. staurognathoides (Walliser, 1964) (see Stott and von Bitter, 1999; see synonymy for additional references). Ozarkodina hassi is a characteristic species of the


Distomodus kentuckyensis Zone (Aldridge, 1972; McCracken and Barnes, 1981). The first occurrence of O. hassi [and/or O. oldhamensis (Rexroad, 1967)] was considered to be indicative of the Ordovician-Silurian boundary by McCracken and Barnes (1981), and O. hassi is the nominate species of the lowest Llandovery biozone from Anticosti Island (Zhang and Barnes, 2002), as well as from Sweden (Bergström et al., 2012). Bergström et al. (2012) reported occurrences of O. hassi in the latest Ordovician, across the Ordovician-Silurian boundary, and into the Telychian. Ozarkodina hassi also occurs in North America (for references, see Zhang and Barnes, 2002), the United Kingdom (Aldridge, 1972, 2002), and Norway (Aldridge and Mohamed, 1982). Pranognathus siluricus has only been reported from


Aeronian strata (Pollock et al. 1970; Aldridge, 1972; Uyeno and Barnes, 1983; Dahlqvist and Bergström, 2005). It was first recognized by Pollock et al. (1970) as Aphelognathus siluricus from northern Michigan and Ontario. It has since been documented in the United Kingdom (Aldridge, 1972), Canada (Uyeno and Barnes, 1983; Stott and von Bitter,1999), Sweden (Dahlqvist and Bergström, 2005), and Russia (for references, see Dahlqvist and Bergström, 2005). The first appearance of Pr. siluricus in the Welsh Borderland (Aldridge, 1972) occurs within the same sample as the first appearance of Pranognathus tenuis (Aldridge, 1972), at the base of the Pr. tenuis Zone (Cramer et al., 2011). In central Sweden (Dahlqvist and Bergström, 2005) and Ontario (Stott and von Bitter, 1999), Pr. siluricus and Pr. tenuis also coincide, and both have been shown to terminate below the Distomodus staurognathoides datum (Stott and von Bitter, 1999). Panderodus and Pseudooneotodus are long-ranging, simple


coniform genera that are frequently found in Silurian strata. Panderodus serratus ranges from the Ordovician to the


before the first appearance of Pseudolonchodina expansa,and range to the middle Aeronian or higher. The range of Pranognathus siluricus has been shown to be mid-Aeronian B3 through C1 zones (Stott and von Bitter, 1999). This corresponds to the Pr. tenuis Zone of Cramer et al. (2011), which marks the upper boundary of the Ps. expansa Zone. Pseudolonchodina expansa has been found to occur above the D. staurognathoides datum (Männik, 2007), which marks the upper boundary of the Pr. tenuis Zone (Cramer et al., 2011), therefore the range of Ps. expansa can overlap with that of Pr. siluricus. Pranognathus siluricus has not been reported to occur below the first appearance of Pr. tenuis, therefore it is most likely that the range of Pr. siluricus begins at or within the Pr. tenuis Zone. At Yamaan Us the lowermost sample within the upper


Ludlow (Mellgren, 2010), and Panderodus unicostatus and Pseudooneotodus beckmanni range from the Ordovician to the LowerDevonian (Zhang andBarnes, 2002; Corradini, 2007; Zhang, 2011, 2013); as such, these taxa are of little use for age constraint. Distomodus kentuckyensis and Ozarkodina hassi occur


Zalaa Formation to contain diagnostic conodonts (YU-D) contains Pranognathus siluricus. This is indicative of the Pr. tenuis Zone at that level. No diagnostic conodonts were recovered from below YU-D to further constrain the lower part of the section. Taxa with a first appearance above the Pr. tenuis Zone (i.e., Distomodus staurognathoides) were not found in the studied section. The uppermost samples in the lower Sharchuluut (YU-Q andYU-R) contain elements of Distomodus kentuckyensis, therefore the lower Sharchuluut is restricted to a zone below the D. staurognathoides first appearance datum. The highest zone below the D. staurognathoides Zone is the Pr. tenuis Zone, recognized in the lowest diagnostic sample of the upper Zalaa. This restricts the uppermost Zalaa and lower Sharchuluut formations to the Pr. tenuis Zone, indicative of a late-middle to early-late Aeronian age for the onset of the Silurian carbonate platform within the Gobi-Altai Zone.


Paleoenvironment.—Marine faunas such as Late Ordovician conodonts can be used to interpret paleolatitude (Bergström, 1990). Llandovery conodonts frequently occur in areas located at tropical paleolatitudes (i.e., Laurentia and Baltica) although this does not display provincialism because little is known about high-latitude faunas. The Silurian conodont faunas that have been recorded in areas of higher paleolatitudes are similar to typical Llandovery fauna (Lehnert et al., 1999). Llandovery conodonts have been found to be more useful for interpreting depth rather than latitude (Sarmiento et al., 1994; Lehnert et al., 1999; Dahlqvist and Bergström, 2005), and display environ- mental preference corresponding to facies depth. Because the sample size of the Yamaan Us fauna is small, true relative abundance of taxa is difficult to determine and the paleoecological interpretation must be general. Ozarkodina hassi is generally considered to prefer


shallower water (Idris, 1984; Armstrong, 1990; Aldridge, 2002; Dahlqvist and Bergström, 2005). In contrast, Pseudolonchodina is most abundant in deeper water slope facies (Armstrong, 1990; Aldridge, 2002; Dahlqvist and Bergström, 2005). Species of Distomodus have also been considered to prefer shallower water (Aldridge, 2002), although D. kentuckyensis was found


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188