search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
D’Emic et al.—Revision of the sauropod dinosaur Sonorasaurus


the mass spectrometer, carbonate powders were roasted at 200°C for 1.5 hours and reacted with anhydrous phosphoric acid at ~25°C. Isotope values were normalized to internal and external standards (VPDB and NBS-19), and reported VPDB in


105 standard per mil notation. Precision is better than 0.1‰for both


minor silt and fine sand component within the otherwise sandstone-dominated fluvial deposit within the holotypic quarry were sampled. Such fine-grained beds are more likely to preserve ash fall zircons in greater abundance (Trujillo and Chamberlain, 2013). Sample preparation followed standard techniques of physical disaggregation into individual grains followed by water table,magnetic, and heavy liquids separations (Gehrels et al., 2008). Zircons were analyzed at the University of Arizona’s LaserChron facility using a laser-ablation multi- collector inductively coupled plasma mass spectrometer with a measurement error of 1%–2% (2-sigma level). Euhedral grains that appeared clear in scanning electronmicroscope images were specifically targeted for age determinations, as these tend to be the youngest grains (Gehrels, 2012). A total of 136 age determina- tions were made of unknown samples and 59 from in-house standards (Fig. 3.1).We applied a discordance filter of 15%to the age determinations yielding 132 dates. Recovered U/Pb ages range from 129.2±9.9 (2σ)to 2105.9±4.9 (2σ) Mawithpeaks in the frequency distributions at ~167Ma, 227Ma, ~1407Ma and ~1675Ma (Fig. 3.2; Supplemental Data 1). Phanerozoic ages (<310Ma) show additional young peaks at ~136 and 151Ma


δ18O and δ13C values. For radiometric dating, two fine-grained mudstones with a


(Fig. 3.3). Asmentioned above, the weightedmean average of the five youngest grains is 136.3±4.1 (2σ) (Fig. 3.3–3.4), but we regard this age as too old to represent the Sonorasaurus holotype quarry based on other geological and biostratigraphic evidence (see above).


Sedimentology of the Turney Ranch Formation.—In the Whetstone Mountains the Turney Ranch Formation varies from


900 to 1420m thick and is composed of repetitive successions of fluvial and overbank deposits (Archibald, 1987). In outcrop fluvial units form regularly spaced ridgeswith floodplain units occupying low-lying area in between (Fig. 4.1). Fluvial sand-bodies are typically 2–10m thick and can extend laterally for well over a kilometer (Archibald, 1982; this study). The base of these fluvial sand-bodies is commonly a sharp scour surface while the top can be sharp to gradational (Archibald, 1982; this study; Fig. 4.2, 4.3). Internally they are composed of a basal coarse- to medium- grained sandstone with siltstone rip-up clasts, rounded carbonate nodules, and chert pebbles (Archibald, 1982; this study).


Grain-size fines up-sectionwithin the sand-bodies to medium- and fine-grained sandstones and large scale trough-bedding transitions to ripple cross lamination (Archibald, 1982; this study). Planar cross-bedding, climbing ripples, and planar laminations with


Figure 3. Detrital zircon U-Pb data. 1, and 2, Pb*/U Concordia plots for the two detrital zircon samples from the Turney Ranch Formation in and near the Sonorasaurus holotype quarry. Gray circles represent 2-sigma uncertainty for each age determination on a single grain and black dots concordant ages between the two isotope decay systems. Grains whose ages were greater than 15% discordant were eliminated from further study; 2, Normalized probability spectra for all detrital zircon U/Pb age determinations and peaks identified; 3, normalized probability spectra for detrital zircon U/Pb ages for the Phanerozoic only. Note that mostly euhedral grains were targeted during analysis (i.e., grain selection was non- random), and peak height should not be interpreted as indicative of provenance signatures; 4, Youngest ages obtained from single grain analyses for the two sediment samples at the fossil site. Vertical grey brackets are uncertainty on single grain analyses and black line denotes weighted mean of the single grain analyses. Bold text provides average and represents a maximum depositional age for the site.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188