Cicimurri et al.—Late Paleocene armored lizard fossils from South Carolina, USA
1980), Canadian high arctic, provided evidence that this region was a potential dispersal route for these lizards into Europe during theWasatchian NALMA (Sullivan, 1979; Smith, 2009). However, a slightly older dispersal route, following the Atlantic coast of the United States and Canada, now seems plausible and could explain the apparent sudden appearance of glyptosaurines in the earliest Eocene of Europe (Sullivan et al., 2012).
Paleoecology.—Glyptosaur fossils found in the western United States occur in strata representing fluvial and lacustrine environments (Sullivan, 1979 and references cited therein), but the South Carolina taxon occurs in a stratum that represents a near- shoremarine habitat. The diverse vertebrate assemblage recovered from the Jamestown deposit is dominated by marine species, including more than 60 taxa of elasmobranchs and osteichthyans (based on teeth and otoliths).Calcareous nannofossils indicate that deposition occurred in an inner to middle neritic environment. Although at least one salinity-tolerant turtle is present (Taphrosphys sp.), shell fragments of kinosternid, pelomedusid, and tryonichid turtles are common and indicative of fluvial or brackish habitats. The glyptosaur osteoderms, as well as crocodi- lian teeth, amammal tooth, and fragments of lignite, also hint at the existence of these environments. In general, the fish otoliths represent species that inhabited inner- to middle-shelf-depth environments, but estuarine taxa are also present. Abundant oyster shells also point to the existence of an estuary. However, calcareous nannoplankton do not typically thrive in estuarine set- tings, and where they do, their assemblages tend to be mono- or oligospecific, which the Jamestown assemblage is not.Apro-delta environmentwould be deep enough for calcareous nannoplankton, but still receive an influx of sediment/vertebrate remains from the shore. We conclude that deposition of the fossiliferous deposit occurred in awarm-water environment deep enough for calcareous nannofossils but close enough to the shore for the remains of ter- restrial/brackish-water organisms to be abundant. Middle Eocene (Bridgerian NALMA) glyptosaur osteoderms found in Texas occur in strata representing an estuarine, possibly mangrove- swamp environment (Westgate, 1989; Westgate and Gee, 1990).
Acknowledgments
H. Major and B. Palmer arranged access to the Martin Marietta quarry. V. McCollum assisted with field collections, and J. Ciegler sorted concentrated matrix using a binocular micro- scope. R. Sullivan confirmed our identification of the South Carolina osteoderms as belonging to a glyptosaurine lizard. R. Denton shared his knowledge of Cretaceous anguid lizards from New Jersey, and F. Swain kindly identified ostracodes. J. Ebersole drafted the stratigraphic column seen in Figure 3.2. The editorial suggestions of I. Burgess, E. Osborne, E. Seefelt, and R. Weems helped to improve an earlier version of this manuscript and are greatly appreciated.
References
Agassiz, L., 1833–1843, Recherches sur les poissons fossils: Neuchâtel, Petitpierre, 422 p.
Albright, L.B., 1994, Lower vertebrates from an Arikareean (earliest Miocene) fauna near the Toledo Bend Dam, Newton County, Texas: Journal of Paleontology, v. 68, p. 1131–1145.
151
Aubry, M.-P., 1999, Late Paleocene–early Eocene sedimentary history in wes- tern Cuba: Implications for the LPTM and for regional tectonic history: Micropaleontology, v. 45, p. 5–18.
Augé, M.L., 2003, La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France): Geodiversitas, v. 25, p. 539–574.
Augé, M.L., 2005, Évolution des lézards du Paléogène en Europe: Memoires du Museum National d’Histoire Naturelle, no. 192, 369 p.
Augé, M.L., and Smith, R., 2009, An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition: Zoological Journal of the Linnean Society, v. 155, p. 148–170.
Augé, M.L., and Sullivan, R.M., 2006, A new genus, Paraplacosauriops (Squamata, Anguidae, Glyptosaurinae), from the Eocene of France: Journal of Vertebrate Paleontology, v. 26, p. 133–137.
Baldwin, W.E., Morton, R.A., Denny, J.F., Dadisman, S.V., Schwab, W.C., Gayes, P.T., and Driscoll, N.W., 2004, Maps showing the stratigraphic framework of South Carolina’s Long Bay from Little River to Winyah Bay: US Geological Survey Open-File Report 2004-1013, 28 p.
Bartels, W.S., 1983, A transitional Paleocene-Eocene reptile fauna from the Bighorn Basin, Wyoming: Herpetologica, v. 39, p. 359–374.
Bolet, A., and Evans, S.E., 2013, Lizards and amphisbaenians (Reptilia, Squamata) from the late Eocene of Sossis, (Catalonia, Spain): Palaeonto- logica Electronica, 16.1.8A, 16 p.,
http://palaeo-electronica.org/content/ pe-16-1-2013-table-of-contents.
Bown, P.R., and Dunkley Jones, T., 2006, New Paleogene calcareous nanno- fossil taxa from coatal Tanzania: Tanzania drilling project sites 11 to 14: Journal of Nannoplankton Research, v. 28, p. 17–34.
Boyd, D.W., and Lillegraven, J.A., 2011, Persistence of the Western Interior Seaway:Historical background and significance of ichnogenus Rhizocorallium in Paleocene strata, south-centralWyoming: RockyMountain Geology, v. 46, p. 43–69.
Bramlette, M.N., and Ridel, W.R., 1954, Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores: Journal of Paleontology, v. 28, p. 385–403.
Bukry, D., 1971, Discoaster evolutionary trends: Micropaleontology, v. 17, p. 43–52.
Bybell, L.M., and Self-Trail, J., 1995, Evolutionary, biostratigraphic and taxonomic study of calcareous nannofossils from a continuous Paleocene-Eocene boundary section in New Jersey: US Geological Survey Professional Paper 1554, p. 1–36.
Case, G.R., 1994b, Fossil fish remains from the late Paleocene Tuscahoma and early Eocene Bashi formations of Meridian, Lauderdale County, Mississippi: Part II—Teleosteans: Palaeontographica Abteilung A, v. 230, p. 139–153.
Case, G.R., Cook, T.D., and Wilson, M.V.H., 2011,A new genus and species of fossil myliobatoid ray from the Fishburne Formation (lower Eocene/ Ypresian) of Berkeley County, South Carolina, USA: Historical Biology, v. 23, p. 1–6.
Casier, E., 1946, La faune ichthyologique de l’Ypresien de la Belgique: Memoires du Musée Royal d’Histoire Naturelle de Belgique, no. 104, 267 p.
Casier, E., 1950, Contributions a l’Etude des Poissons Fossiles de la Belgique. IX. La faune des formations dites “paniseliennes”: Bulletin du Musée Royale de Sciences Naturelles de Belgique, v. 26, p. 1–52.
Casier, E., 1966, Faune Ichthyologique du London Clay, London, British Museum (Natural History), 496 p.
Casier, E., 1967, Le Landénien de Dormaal (Brabant) et sa faune ichthyologique: Memoires de Musée Royal d’Histoire Naturelle de Belgique, no. 156, 42 p.
Cicimurri, D.J., 2010, On the dentition of Meridiania convexa Case (Mylioba- toidea), an extinct early Eocene ray from the United States: Cainozoic Research, v. 7, p. 99–107.
Cicimurri, D.J., and Knight, J.L., 2009, New record of an extinct fish, Fisherichthys folmeri Weems (Osteichthyes), from the lower Eocene of Berkeley County, South Carolina, USA: PaleoBios, v. 29, p. 24–28.
Cleaves, E.T., Edwards, J., Jr., and Glaser, J.D., 1968, Geologic map of Maryland: Maryland Geological Survey, scale 1:250,000.
Colquhoun, D.J., and Muthig, M.G., 1991, Stratigraphy and structure of the Paleocene and lower Eocene Black Mingo Group, South Carolina, in Horton, J.W., Jr., and Zullo, V.A., eds., The Geology of the Carolinas.
Case, G.R., 1994a, Fossil fish remains from the late Paleocene Tuscahoma and early Eocene Bashi formations of Meridian, Lauderdale County, Mississippi. Part I—Selachians: Palaeontographica Abteilung A, v. 230, p. 97–138.
Cappetta, H., 1982, Revision de Cestracion duponti Winkler, 1874 (Selachii, Batomorphii) du Bruxellien de Woluwe-Saint-Lambert (Eocene Moyen de Belgique): Contributions to Tertiary and Quaternary Geology, v. 19, p. 113–125.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188