search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Lee et al.—Rankenella zhangxianensis


holdfast and attached substrate (Fig. 5.3). In longitudinal sections, trabs parallel/subparallel to gastral surface, diverging outward and meet dermal surface perpendicularly or subangularly (Fig. 5.4, 5.5). Thicknesses of trabs ~0.1mm(Fig. 5.6–5.8). Individual spicules not identified within trab. Trabs linked by 3–7 dendroclones, forming ladderlike series. Dendroclones measured from center of a trab to other center of a trab are ~0.02mm wide and 0.3–0.35mm long. A few Y-shaped dendroclones identified (Fig.5.9,5.10). Approximately 7–12 trabs occur between dermal and gastral surfaces (14–24mmthick) (Figs. 4.1, 4.2, 5.4).Differentiated canal systems generally absent, although two specimens contain well-differentiated canals (Fig. 5.6).


Etymology.—From Zhangxia Formation, referring to the occurrence of the species.


Type material and repository.—All figured specimens are deposited in Nanjing Institute of Geology and Palaeontology (NIGPAS159373–159392). Holotype: NIGPAS159373, Para- types: NIGPAS159374–159392. All samples are thin sections perpendicular to the bedding except for NIGPAS159387, which is a thin section parallel to the bedding. Late Cambrian Stage 5–early Guzhangian, Zhangxia Formation, Shandong Province, China.


Occurrence.—Two outcrops (Beiquanzi and Jiulongshan sec- tions) of the Zhangxia Formation in Shandong Province, China (Fig. 2). Most specimens occur within bioherms, some within surrounding packstone to grainstone.


Remarks.—Rankenella zhangxianensis shows structures gen- erally similar to the other two species of Rankenella: the type species, R. mors found in wackestone (late Cambrian Stage 4–early Cambrian Stage 5) and an Angulocellularia-Taninia- Rankenella reef (late Drumian) of Australia (Kruse, 1983, 1996; Kruse and Reitner, 2014), and R. hamdii reported from wack- estone (late Cambrian Series 3) and a Rankenella-Girvanella reef (early Furongian) of Iran (Hamdi et al., 1995; Kruse and Zhuravlev, 2008). Rankenella mors is characterized by diverse shapes including conicocylindrical, digitate or explanate struc- tures, and a relatively thin wall (3 to 5 trabs between dermal and gastral surfaces). On the other hand, R. hamdii has a thicker wall (4 to 10 trabs between dermal and gastral surfaces) and similar overall morphology with that of R. mors, plus notable occur- rence of bowl shape. The number of dendroclones that connect two nearby trabs are 3–4in R. mors and 3–10 in R. hamdii. Compared to these two other species, R. zhangxianensis is


characterized by less diverse shape (mostly obconical/ cylindrical) and a thicker wall (7–12 trabs between dermal and gastral surfaces). Spongocoel diameter of R. zhangxianensis


7


generally overlaps with that of R. mors (~13mm) and R. hamdii (~11mm in digitate shape; ~31mm in bowl shape), although some specimens exceed these range (~21mm in obconical shape). The number of dendroclones connecting each trab of R. zhangxianensis overlaps with the other species (3–7), although the number is generally larger than in R. mors and smaller than in R. hamdii. Secondary thickening of the spicule net adjacent to the dermal surface, which notably occurs in the other two species, is generally absent in R. zhangxianensis. On the other hand, angles between dermal surfaces and trabs intersecting the surfaces are also different; the angles are up to 90° in R. zhangxianensis (Fig. 5.4, 5.5), which is notably larger than ~60° in the other species. All these features collectively indicate that R. zhangxianensis is a new species that can be separated from R. mors and R. hamdii. Minor occurrence of canals within R. zhangxianensis is


noteworthy, because both Australian and Iranian species lack differentiated canals. The occurrence of canals within R. zhangxianensis suggests that the species may not belong to Rankenella because the genus has been characterized by absence of differentiated canal systems (Kruse, 1983, 1996). Rankenella zhangxianensis may be similar to young individuals of Gallatinospongia, which only develop distinct canals during the final stage of growth (R.S. Shapiro, personal communica- tion, 2014). However, the absence of canals in the largest specimen of R. zhangxianensis (Fig. 4.3) and rare occurrence of canals within the species indicate that differentiated canal systems are most likely features that seldom developed in the species. Therefore, R. zhangxianensis is closer to Rankenella than to other genera, although the species may represent a transitional form between Rankenella and other Furongian genera with canals (Gallatinospongia and Wilbernicyathus). It is necessary to have more examples of Cambrian anthaspidellids in order to determine their evolutionary history.


Rankenella zhangxianensis and its implication to other early Paleozoic sponge-microbial reefs


Preliminary sedimentological results suggest that Rankenella zhangxianensis is the oldest known anthaspidellid sponge that constructed reefs. Although many specimens only show a transverse section, some specimens with a longitudinal section suggest that R. zhangxianensis encrusted on microbialite, Cambroctoconus orientalis, or other individuals of R. zhangxianensis (Figs. 4.1, 4.2, 5.1, 5.2).Both R. zhangxianensis and C. orientalis are commonly covered by microstromatolites, and interstitial spaces between these organisms are occupied by micrite (Figs. 4.2, 5.1). Epiphyton comprises a significant volume of the reef, mainly growing upward. These data collectively suggest that Epiphyton, R. zhangxianensis,and


Figure 5. Photomicrographs of Rankenella zhangxianensis in Zhangxia Formation, Beiquanzi section. All photomicrographs are taken from bedding-parallel thin sections except for (7)and (10). Forlocation, seeFigure2.(1) NIGPAS519384. Transverse and longitudinal sections. Note that one individual is attached to the other. (2) NIGPAS519390. R. zhangxianensis encrusting on Cambroctoconus orientalis (arrow). (3) Holotype NIGPAS159373. Transverse section of the holdfast. For location, see Figure 4.1. (4) Holotype NIGPAS159373. Transverse section. Trabs subparallel to gastral surface (lower left), diverge outward and almost perpendicularly meet dermal surface (upper right). For location, see Figure 4.1. (5) NIGPAS159392. Trabs parallel to gastral surface (upper left) and subvertically meet dermal surface (lower right). (6–8) Tangential views showing longitudinal trabs and dendroclones, forming ladderlike spicule networks. (6) NIGPAS159384. Note occurrence of canal-like structures. For location, see Figure 5.1. (7) NIGPAS159387. (8) NIGPAS159384. For location, see Figure 5.1. (9, 10) Transverse sections showing dendroclones between trabs with some Y-shaped dendroclones. (9) NIGPAS159382. For location, see Figure 4.4. (10) NIGPAS159387. Scale bars: (1)5mm, (2)3mm, (3–10) 1mm.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188