144
Journal of Paleontology 90(1):133–146
Figure 8. Biostratigraphical and geographical distribution of species of the North American kritosaurin genera Gryposaurus and Rhinorex. Literature sources for each taxon’s distribution and geochronological range are as follows: G. latidens (Prieto-Márquez, 2012); G. notabilis (Evans, 2007; Farke and Herrero, 2014 Gates et al., 2014); G. monumentensis (Gates and Sampson, 2007); and R. condrupus (Gates and Scheetz, 2015). Depicted skulls are redrawn and/or modified based on the following: G. latidens (Horner, 1992); G. notabilis (photographs of CMN 2278 by APM); G. monumentensis (Gates and Sampson, 2007); R. condrupus (Gates and Scheetz, 2015).
Table 3. Selected mandibular measurements (in millimeters) of CCQ juvenile hadrosaurid elements.
Element Dentary (ANSP 16242), preserved length
Dentary (ANSP 16242), distance from base of mandibular ramus to apex of coronoid process
Scapula (ANSP 15979), preserved length
Scapula (ANSP 15979), maximum width across deltoid fossa Humerus (ANSP 15979), length
Humerus (ANSP 15979), maximum width across deltopectoral crest
Tibia (ANSP 15979), length Tibia (ANSP 15979), width of proximal margin
Measurement (mm)
95 47
180 64
169 41
282 80
Gilmore, 1933, the coronoid process remains subvertically oriented throughout ontogeny (Prieto-Márquez, 2011b). The apex of the coronoid process of ANSP 16242 is not rostrocaudally expanded, unlike those of adult hadrosaurid individuals (Fig. 3.4, 3.5). The scapula (ANSP 15979) is nearly complete, missing
that would allow intrageneric or intraspecific ontogenetic comparisons forced us to arbitrarily choose adult specimens from selected hadrosaurid taxa for such purposes. The dentary (ANSP 16242) preserves the coronoid process
and a ventrally eroded caudal region of the mandibular ramus (Fig. 3.1, 3.2). Eight alveoli are preserved lacking all teeth. The coronoid process is nearly vertically oriented, in contrast to the strong rostral inclination typically seen in adult forms. Similarly, Maryanska and Osmólska (1981) noted that in the saurolophine Saurolophus angustirostris Rozhdestvensky, 1952, coronoid process is also less rostrally inclined in juveniles. While this may be a trend in hadrosaurids, at least in some hadrosaurid outgroups such as Bactrosaurus johnsoni
only the distal extent of the blade (Fig. 3.3). The proximal constriction is 63% of the width of the articular margin of the scapula, wider than typically seen in adult hadrosaurids (e.g., in G. latidens AMNH FABR 5465, it is 54% the width of the proximal articular margin; Fig. 3.6). Narrower juvenile scapular ‘necks’ have been also previously noted in the saurolophine Edmontosaurus annectens Marsh, 1892 (Prieto- Márquez, 2010b), the lambeosaurine Hypacrosaurus stebingeri Horner and Currie, 1994, and some nonhadrosaurid hadrosaur- oids (Prieto-Márquez, 2011b). Brett-Surman and Wagner (2007) and Prieto-Márquez (2011b, 2014b) reported an increase in the robustness and caudoventral elongation of the deltoid ridge in adult hadrosaurids and the basal hadrosauroid Bactrosaurus johnsoni, respectively. Such trend is not oberved here: the CCQ juvenile displays a relatively robust, long, and well-defined deltoid ridge (Fig. 3.3), more so than in some large adult specimens such G. latidens AMNH FABR 5465 (Fig. 3.6). Differences between the CCQ juvenile humeri (best
exemplified by the complete element ANSP 15979; Fig. 3.7, 3.8) and typical adult hadrosaurid humeri follow previous trends
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188