search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
D’Emic et al.—Revision of the sauropod dinosaur Sonorasaurus


127


the quarry preserves some channel-lag deposits containing pebbles (Ratkevitch, 1998; Scarborough, 2000), so the sedimentological context speaks to an abiological origin for these clasts. Finally, point (5) is circular. Further evidence is required to substantiate the presence of gastroliths in Sonorasaurus.


Cladistic analysis


Figure 25. Bone histology of the humerus of Sonorasaurus thompsoni (ASDM 500) from the mid-Cretaceous Turney Ranch Formation of Arizona, USA: (1, 2, 3) at right indicate detail of corresponding regions of section at left. Arrowheads denote lines of arrested growth; brackets and arrowheads denote multiple lines of arrested growth deposited within one year (i.e., double LAGs). Abbreviations: po = primary osteon; so = secondary osteon.


‘Gastroliths’.—Thayer and Ratkevitch (1995) and Ratkevitch (1998) reported the presence of several gastroliths from the holotype quarry of Sonorasaurus thompsoni. Thayer and Ratkevitch (1995:74) gave five lines of evidence to support their identification of gastroliths: “(1) highly polished; (2) exotic types of rock for the region; (3) high in silica; (4) out of sedimentological context; 5) in formations known to contain fossils for gastroliths—using animals such as ornithopods and sauropods.” However, these lines of evidence are problematic, and the purported presence of gastroliths in general in sauropods has been challenged (Wings and Sander, 2007). Regarding point (1), a polish similar to that seen on the ‘gastroliths’ of the Sonorasaurus quarry is not expected (Wings and Sander, 2007). Regarding points (2) and (3), the Turney Ranch Formation contains abundant ‘gastroliths’ regardless of the presence of associated bone (MDD, BZF, NJ personal observation, 2014), as well as other ‘exotic’ clasts such as cobbles of Paleozoic limestone and pre-Phanerozoic reworked zircon crystals (Dickinson et al., 2009; see above/below). Regarding point (4), the ‘gastroliths’ attributed to Sonorasaurus were scattered around the quarry, and


In order to understand the lower–level relationships of Sonorasaurus,we used the character-taxon matrix from a recent cladistic analysis designed to investigate the relationships of early titanosauriforms (D’Emic, 2012). We chose to use the smaller matrix of D’Emic (2012) rather than the larger matrix of Mannion et al. (2013) because the latter employs many interrelated characters. For example, Mannion et al. (2013) separately coded the gracility of the humerus (character 42), radius (character 45), ulna (character 50), and first metacarpal (character 53). However, these are biologically related features in sauropods—sauropods with gracile forelimbs tend to have each long bone elongated, not just one segment (McIntosh, 1990). Likewise, characters 141 and 144 of Mannion et al. (2013), which code the extent and style of pneumaticity in the dorsal vertebrae, are related. Other characters are also biologi- cally related: Mannion et al. (2013) separately coded variation in the cross sectional shape of the pubic peduncle of the ilium (C57) and the iliac peduncle of the pubis (C58), but since these structures directly articulate, their shapes should not be coded independently. A similar problem exists in coding the promi- nence of the olecranon process of the ulna (C233 of Mannion et al., 2013) separately from the depth of the supracondylar fossa on the posterior face of the distal humerus (C228 of Mannion et al., 2013), which receives the olecranon process. Similarly, characters C15, 16, 17, 21, 22, 25, 26, 28, 29, 30, and 31 deal with the proportions of vertebral centra; though this feature does display variation along the column, it does not vary indepen- dently as eleven characters. An argument could be made that all of these characters are independent if they do not display iden- tical scorings, but subtle differences could be due to the vicis- situdes of preservation or the delineation of states by a given researcher; their biological relatedness indicates that they should not be split (see Gingerich et al., 2010). The effect of over- splitting these characters gives them greater weight, biasing the analysis in favor of them. A full discussion of the effects of character atomization and appropriate matrix size is beyond the scope of this paper—for recent debates of this issue, see dis- cussions surrounding pterosaurs (Nesbitt, 2011, Bennett, 2013), turtles (Gaffney and Jenkins, 2010; Joyce and Sterli, 2012), and primates (Williams et al., 2010; Gingerich et al., 2010). We made modifications to the matrix of D’Emic (2012)


for our analysis of Sonorasaurus. We added two OTUs, Sonorasaurus and Lusotitan, and we altered 15 character state scores for Europasaurus based on recently published material (Carballido and Sander, 2013; Marpmann et al., 2014). These include character 9 (1 to 0), characters 18, 30, 31, 33, 35, 36, 49, 53, 56, 57, 63 (? to 0), and characters 51 and 59 (? to 1). Three characters (Table 3) were added to the matrix ofD’Emic (2012). First, a character was added to describe the posterior elongation of middle dorsal vertebral centra and consequent anterior dis- placement of the neural arch. In most sauropods, the middle


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188