This page contains a Flash digital edition of a book.
RESEARCH REVIEW


Novel waveguide increases superluminescent output Blue superluminescent diodes deliver 200 mW of power


A PARTNERSHIP between Polish and Japanese researchers claims to have set a new benchmark for the combination of output power and smoothness of spectral output for GaN superluminescent diodes.


This team’s emitter features a ‘J-shaped’ waveguide and could be used in fibre- optic gyroscopes and optical coherence tomography. Both applications require a light source that combines a high degree of spatial coherence with low time coherence. These conditions are met with the superluminescent diodes. They were developed in the arsenide material system in the 1970s, but the shorter wavelengths emitted by GaN-based materials are beneficial.


“In the case of fibre-optic gyroscopes, the advantage of nitride superluminescent diodes is the possibility of using plastic fibres, which may increase the robustness of the entire system,” explains Anna Kafar from the Institute of High Pressure Physics in Warsaw, Poland. For optical coherence tomography, a technique that is often used to generate three-dimensional images of biological samples, the emission from the GaN- based source increases spatial resolution. “However, due to absorption, this imaging method will be better for imaging non- biological, more transparent samples,” says Kafar.


The team’s J-shaped device combines a straight waveguide that contains the rear


facet with a curved waveguide that has the output facet.“This geometry gives the benefits of a double-pass device − such as a long amplification path − while the chip length remains short, which is important from a packaging point of view,” remarks Kafar.


She says that the collaboration, which includes researchers from TopGaN and Kyoto University, is not the first to make a GaN-based J-shaped superluminescent diode − but they have taken its performance to a new level by optimising the architecture of these chips. This propelled the output power to 200 mW, twice that of the previous record held by researchers at Osram Opto Semiconductors, and it also enabled a smooth emission profile from this diode.


According to Kafar, the fabrication of the epitaxial structure is analogous to that of a laser. One of the biggest challenges is to optimise the bend angle, which varies with wavelength and governs the quality of the emitted spectrum.


Construction of J-shaped


superluminescent diodes begins with the MOCVD growth of an epistructure on bulk GaN. This epitaxial stack comprises: an 800 nm-thick, silicon- doped Al0.08


Ga0.92 Ga0.9 N quantum wells separated by In0.02 Ga0.98


Superluminescent diodes emit a spectra with a peak at about 407 nm and an output power of 200 mW


then on increased in a linear fashion. Measurements of emission spectra revealed that the device is not lasing, but its emission spectra is not entirely smooth. There are modulations in the emission spectra that have a 0.025 nm period, and their depth increases as the current is cranked up. This increase in modulation depth is attributed to a rise in oscillating light in the waveguide. Another consequence of increasing the drive current is a reduction in full-width half maximum from 7 nm to 2.5 nm.


N bottom cladding layer;


a 140 nm-thick GaN waveguide; an active region with three In0.1


N barriers;


an AlGaN electron-blocking layer that is 28 nm-thick; a 150 nm-thick waveguide; and a 430 nm-thick, magnesium-doped Al0.05


Ga0.95 N top cladding.


Superluminescent diodes were formed with chip lengths of 700 µm, 1000 µm and 1500 µm. Angles between the waveguide axis and the axis perpendicular to the chip facet varied from 5.5° to 7.5°. Mounting these chips on a two-side copper heatsink ensured effective heat spreading of the diodes.


Superluminescent diodes produce a spectral output that narrows with increasing drive current


A 1 mm-long device with a 7.5° bend angle produced the highest optical power. Output increased exponentially with drive current up to about 300 mA, and from


60 www.compoundsemiconductor.net October 2013


The Poland-Japan collaboration found that operating temperature strongly influences the quality and stability of the light emitted by the diode. Increasing the current in a device mounted in a standard TO56 package produced a red-shift in emission, due to an increase in the chip’s temperature. However, if the diode is mounted in a two-side copper heatsink, cranking up the current leads to a blue- shift in emission, due to compensation of the built-in electric fields.


“We plan to optimise the thermal properties of our diodes, so that we can report 200 mW or more of optical power from a TO-56 can,” says Kafar.


A. Kafar et. al. Appl. Phys. Express 6 092102 (2013)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142