This page contains a Flash digital edition of a book.
OPINION STANDARDS


What this means is that efforts at determining the composition are closer to resembling the matching of paint colour cards than the making a scientific measurement. In practice, engineers tend to add a little bit of this and a little bit of that until they get a layer that matches the one they grew last month. Several reasons can account for the persistence of this inefficient situation. Habit probably tops this list. Take a compound semiconductor alloy system with a long history of technological importance: Alx


Ga1 - x As.


This alloy has the extremely useful property that its lattice parameter has almost no dependence on the aluminium mole fraction. Thanks to this very favourable attribute, hetero-junctions can easily be grown without introducing strain relaxation from defects. This has led to widespread determination of the aluminium mole fraction with an X-ray diffraction (XRD) rocking curve that can uncover the small elastic strain in AlGaAs. But this method is not flawless: It can be fooled by changes in the substrate lattice parameter or by a doping-induced expansion or contraction of the lattice.


Fortunately, this is not the only approach to determining AlGaAs composition. If the aluminium content is low, its mole fraction can be uncovered by measuring the band gap energy with photoluminescence. This is a high precision method, but it is


again subject to systematic errors from sample heating, impurity and doping shifts of the apparent band edge, and excitation intensity shifts in band-edge transitions.


If you have learnt to determine AlGaAs composition of an epilayer, what method do you follow? Chances are that it is one of the two listed above – measuring strain relative to the substrate with XRD, or determining the bandgap with photoluminescence. And it’s probable that you convert this number to a composition with an equation given to you by your thesis advisor, an older graduate student, or your supervisor.


If


you changed institutions, you might have taken your equation with you, or maybe you accepted a new one. The local nature of these conversion factors is often an impediment to the absolute accuracy of any composition measurement.


Up until now, we’ve only discussed the problems associated with ternary alloys. These are magnified to an entirely new level with quaternary compounds like InGaAsP. When the National Institute of Standards and Technology (NIST) sponsored a round-robin comparison of this class of material in 2002, this institute found substantial variations in XRD and photoluminescence data on identical samples examined in nine different laboratories. Don’t put down these variations to laboratory-dependent calibration factors – they persist even when these factors are removed from the data analysis.


Fortunately, it is not all doom and gloom: We have the technology to remedy this situation. Starting in 1997, NIST began a programme to standardise the measurements of compound semiconductor composition, starting with AlGaAs. Some of the impetus for the work came from the Optoelectronic Industry Development Association (OIDA), and NIST sought input through venues such as CS-MAX and SEMI committees.


Methods for determining composition analysis were examined during this programme, with several papers published that quantified the measurement uncertainty for those methods and outlined best practices. In 2006, the programme culminated with the production of Standard Reference Materials (SRMs) for an aluminium mole fraction in AlGaAs near 0.20 (SRM 2841) and near 0.30 (SRM 2842). Each standard consists of a layer of AlGaAs about 3 µm-thick on a GaAs substrate. The AlGaAs layer has been certified to have a stated aluminium mole fraction with a typical absolute uncertainty of 0.002 (2 σ).


Another highlight of this programme is that it led to a refinement for the correction factors for aluminium, gallium, and arsenic in the CITZAF method for the accurate interpretation of data collected in electron microprobe X-ray analysis.


More recently, the range of materials has increased, with NIST producing SiGe composition reference materials (RMs) in response to industry requests. (Without getting into too much detail, the RMs differ from the SRMs in that they are stated to be suitable for their intended purpose but not directly traceable to the mole.)


X-ray diffraction is widely used to determine the composition of aluminium in AlGaAs. Care is needed, however, because interpretation of the data must account for the substrate lattice parameter and doping-induced expansion or contraction of the lattice. Photo by James Burrus, NIST


54 www.compoundsemiconductor.net October 2013


One of the benefits of having reference materials available is that they can be used to improve accuracy of other compositional analysis methods, such as Auger spectroscopy, X-ray photoemission spectroscopy, and SIMS, provided that any necessary corrections for sampling depth considerations are included. The Fundamental Parameters projects – efforts by


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142