This page contains a Flash digital edition of a book.
ORGANICPV

polymer:fullerene devices as well as improve the throughput of the technique.

Coupling broad spectrum illumination with the pcAFM and trEFM setups would also allow for spectral analysis of optoelectronic behavior. Further pcAFM work is currently underway in several groups using lower work function tips so as to avoid some of the limitations discussed above and perhaps achieve better quantitative agreement between EQE and spatially-averaged photocurrent on different donor/acceptor blend ratio devices.

While the techniques here are presented in the context of OPV morphology, it should be stressed that they can also be useful in other photoactive technologies.

For example, solid-state dye sensitized solar cells30 or composite photocatalysts31

are expected to

exhibit local heterogeneity that would ultimately impact electrical performance. trEFM and pcAFM therefore have the potentialprovide ideal tools for characterizing these differing types of photovoltaic solar systems.

References

1.Chen, L., Hong, Z., Li, G. and Yang, Y. Recent progress in polymer solar cells: Manipulation of polymer: Fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater. 21, 1 (2009). 2.Coakley, K. M. and McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533 (2004). 3.Guenes, S., Neugebauer, H. and Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

4.Chen, H.-Y. et al. Polymer solar cells with enhanced open- circuit voltage and efficiency. Nature Photonics 3, 649 (2009). 5.Morita, S., Zakhidov, A. A. and Yoshino, K. Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence. Sol. St. Comm. 82, 249 (1992). 6.Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992). 7.Scully, S. R. and McGehee, M. D. Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. J. Appl. Phys. 100, 034907 (2006). 8.Shaw, P. E., Ruseckas, A. and Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516 (2008).

9.Hoppe, H. et al. Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv. Func. Mater. 14, 1005 (2004). 10.Moule, A. J. and Meerholz, K. Controlling morphology in polymer-fullerene mixtures. Adv. Mater. 20, 240 (2008). 11.Douhéret, O. et al. High resolution electrical characterisation of organic photovoltaic blends. Micro. Eng. 84, 431 (2007). 12.Leever, B. J. et al. Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy. Appl. Phys. Lett. 92, 013302 (2008). 13.Chiesa, M. et al. Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. Nano Lett. 5, 559 (2005).

14.Hoppe, H. et al. Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett. 5, 269 (2005). 15.Maturová, K., Kemerink, M., Wienk, M. M. and Charrier, D. S. H. Scanning kelvin probe microscopy on bulk heterojunction polymer blends. Adv. Func. Mater. (2009). 16.Palermo, V., Palma, M. and Samori, P. Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mat. 18, 145—164 (2006). 17.McNeill, C. R., Frohne, H., Holdsworth, J. L. and Dastoor, P. C. Near-field scanning photocurrent measurements of

polyfluorene blend devices: directly correlating morphology with current generation. Nano Lett. 4, 2503 (2004). 18.Riehn, R. et al. Local probing of photocurrent and photoluminescence in a phase-separated conjugated-polymer blend by means of near-field excitation. Adv. Func. Mater. 16, 469 (2006).

19.Romero, M. J., Morfa, A. J., Reilly III, T. H., van de Lagemaat, J. and Al-Jassim, M. Nanoscale imaging of exciton transport in organic photovoltaic semiconductors by tip-enhanced tunneling luminescence. Nano Lett. 9, 3904 (2009). 20.Pingree, L. S. C., Reid, O. G. and Ginger, D. S. Electrical scanning probe microscopy on active organic electronic devices. Adv. Mater. 21, 19 (2009). 21.Groves, C., Reid, O. G. and Ginger, D. S. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. Acc. Chem. Res., in press. 22.Coffey, D. C., Reid, O. G., Rodovsky, D. B., Bartholomew, G. P. and Ginger, D. S. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett. 7, 738 (2007). 23.Pingree, L. S. C., Reid, O. G. and Ginger, D. S. Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells. Nano Lett. 9, 2946 (2009). 24.Coffey, D. C. and Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 5, 735 (2006).

25.Girard, P. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485 (2001). 26.Kalinin, S. V. and Bonnell, D. A. in Scanning probe microscopy and spectroscopy: theory, techniques, and applications (ed. Bonnell, D. A.) 205-251 (Wiley-VCH, New York, 2001).

27.Muller, E. M. and Marohn, J. A. Microscopic evidence for spatially inhomogeneous charge trapping in pentacene. Adv. Mater. 17, 1410 (2005). 28.Silveira, W. R. and Marohn, J. A. Microscopic view of charge injection in an organic semiconductor. Phys. Rev. Lett. 93, 116104 (2004). 29.Ma, W., Yang, C. and Heeger, A. J. Spatial Fourier-transform analysis of the morphology of bulk heterojunction materials used in “plastic” solar cells. Adv. Mater. 19, 1387 (2007). 30.Luo, Y., Li, D. and Meng, Q. Towards optimization of materials for dye-sensitized solar cells. Adv. Mater. 21, 1 (2009). 31.Zhong, D. K., Sun, J., Inumaru, H. and Gamelin, D. R. Solar water oxidation by composite catalyst/ασ-Fe2 Am. Chem. Soc. 131, 6086 (2009).

O3

photoanodes. J.

55

www.solar-pv-management.com Issue II 2010 Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104
Produced with Yudu - www.yudu.com