This page contains a Flash digital edition of a book.
ORGANICPV

As with trEFM, we can assess the quantitative relationship between the pcAFM current information in characterizing OPV efficiency by correlating the spatially-averaged photocurrent in pcAFM data with EQE measurements on the same materials

54

-butyric acid methyl ester (PCBM). We observed microscopic heterogeneity in both topography and short-circuit photocurrent, even in the most efficient MDMO-PPV/PCBM solar cells.22

The

Acknowledgments

The authors thank Kevin Noone for assistance with the first figure and Obadiah Reid for helpful discussion. This review is based in part on work

supported by the NSF (DMR-0120967 and DMR-0449422), AFOSR, DOE, and ONR. D.S.G. also thanks the Camille Dreyfus Teacher- Scholar Awards program and the Alfred P. Sloan foundation for support.

variation in photocurrent in otherwise topographically similar areas implies different sub- surface compositions. More recently, we used further pcAFM measurements on P3HT:PCBM samples with different processing conditions to study the underlying morphological contribution to changes in device performance. Annealing a deposited film is a common processing step to improve the efficiency of the device.29

Using

pcAFM, we were able to directly observe the relationship between photocurrent distribution and annealing, namely the increase in both average and peak photocurrent with increased annealing time.23

For example, in Figure 4a and 4b we show the topography and corresponding short-circuit photocurrent for a P3HT:PCBM film annealed for 10 minutes. As with the MDMO-PPV:PCBM samples, local variations in photocurrent are evident within topographically featureless areas.

As with trEFM, we can assess the quantitative relationship between the pcAFM current information in characterizing OPV efficiency by correlating the spatially-averaged photocurrent in pcAFM data with EQE measurements on the same materials. As can be seen in Figure 4c, photocurrent measurements derived via pcAFM follow the same qualitative trend as the efficiencies obtained from the macroscopic devices. This

With pcAFM, the photocurrent measured at a given location reflects the local charge generation properties. At 0 V, this current represents the short- circuit current; it is also possible to record local I-V curves at each point by varying the voltage. We have performed pcAFM on typical polymer/fullerene active layers such as poly(2- methoxy-5-(3’,7’-dimethyloctyl-oxy)-1,4-phenylene vinylene) (MDMO-PPV) or poly(3-hexylthiophene) (P3HT) mixed with fullerene derivative (6,6)-phenyl-

C61

result suggests that pcAFM can probe the microscopic underpinnings of macroscopic device performance. The pcAFM data acquired can then be useful to extract electron and hole current and mobility from OPV devices and could even be used as a tool to select optimal blends and processing conditions. However, it is important to emphasize that while the qualitative trends between the pcAFM data and EQE are generally in good agreement, we often find quantitative differences between the local pcAFM averages and the bulk device properties. This is not entirely surprising given that we are using high work function tips (Au, Pt) and that contact effects are expected to play some role in the current extraction. Indeed, it is for this reason that we believe pcAFM data generally correlates better with macroscopic performance for a fixed blend ratio than it does across a wide range of donor/acceptor concentrations,22

and the

importance of the tip workfunction and any associated injection/extraction barrier should always be kept in mind when analyzing pcAFM data.

Summary and Outlook

in area will implicitly involve a great deal of averaging of the device properties and much of the local microscopic detail will subsequently be lost.

The BHJ morphology upon which OPVs rely is extremely complex. The mixing of an electron donor and acceptor in a common solution, followed by spin coating, yields a morphology that has features on a variety of length scales. These features in turn affect the ability of the device to split excitons and the ability of the resulting charges to navigate a route through the film to emerge as useful photocurrent. As a result, the performance of OPVs is inherently a local property. Measurements on bulk devices that are several mm2

The techniques we have described here are extensions to the conducting-AFM measurement made with an Asylum Research MFP-3D-BIO. These in turn have allowed us to make measurements of the morphology, electrical and optical properties of BHJs all on the nanoscale, and, crucially, on the same area of the device.

As a result we have been able to make significant steps forward in our understanding of how even well-characterized OPV systems operate in terms of the local morphology.

It seems that there is much room for further advancement. For example improvements in time resolution in trEFM beyond the current 100 µs limit, for example using newer generation equipment with higher bandwidth, could open up further time- resolved experiments on different systems such as

www.solar-pv-management.com Issue II 2010 Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104
Produced with Yudu - www.yudu.com