search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Electronics


peripheral nervous systems can be recorded and stimulated. The next phase of research will further refine the technology, preparing it for initial first- in-human studies. Spinal cord injuries at or above the C8 cervical vertebrae carry a high risk that the corresponding patient will become a quadriplegic, preventing the use of arms, hands, and the lower extremities. The French company STATICE is researching to restore mobility by reading thoughts and linking them to an exoskeleton using invasive – but long-term functional – implants. The results of a clinical trial were published in the The Lancet at the end of 2019, providing proof of concept for the control of an exoskeleton for quadriplegics. The


researchers used WIMAGINE neuroprostheses in the study. They consist of 64 electrodes and can be placed on the dura to record brain activity. The long-term functionality of the WIMAGINE implants was demonstrated by implantation in two patients with C5 spinal cord lesions. The next step will be to confirm this in additional patients. In addition, WIMAGINE is being used to bypass the damaged spinal cord so that the motor signals originating from the brain can be decoded and translated directly into impulses to the nerves. Thus, the damaged spinal cord can be bypassed wirelessly.


Going quantum


BCI systems can also be combined with non-invasive brain stimulation by means of an Electroencephalogram (EEG). Professor Soekadar’s research group at the Charité in Berlin is working on this. By combining these two technologies, neuroplastic processes can be better understood and influenced, allowing new and effective therapeutic methods to be developed. In this way, diseases of the CNS can be treated individually and with few side effects. The exoskeleton is controlled by means of an EEG and electrooculography. It has been shown that assistive and restorative BCI are effective clinical tools for regaining the ability to move. The major advantage of this non-invasive option is that it allows patients to remain mobile and leave the laboratory, but at the expense of resolution and frequency range. A possible further development of this system lies in the technology of quantum BCI, which uses quantum sensors. Due to a better contact between sensor and brain, a better sensitivity, selectivity and resolution can be achieved by using quantum sensors. In addition, the compactness can allow for better freedom of movement. The system should make it possible to control the complex movements of a robot or reconstruct language from neuromagnetic brain activity. Quantum sensors are thus the most promising technology to advance non-invasive BCI applications, but some technical challenges – magnetic shielding and thermal insulation among others – need to be overcome first.


80 Medical Device Developments / www.nsmedicaldevices.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170