search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Manufacturing technology Out on a limb


Of course, talking about the power of I4.0 in theory is all well and good, but what does this process actually look like in practice? Once again, Popov’s experiences offer something of an answer. With his colleagues in Israel, he uses 3D printing to develop titanium alloy implants for patients. These implants cover a range of medical conditions – from strengthening bones damaged by cancer to fighting bone tumours – but are unified by their clever use of technology. In particular, that involves so-called electron beam melting machines, which essentially zap materials together using a combination of diffusion and heat transfer processes. That’s shadowed by work across Israel, where a colleague of Popov has exploited technology to create an entire 3D-printed heart – albeit one too small to use in people. What’s clear, at any rate, is that all these achievements require careful planning and close partnerships between departments. Popov, for his part, says his research involves working with printing engineers, materials scientists and medical professionals. The process starts in the hospital, where surgeons use CT scans to understand what kind of implant a patient needs. From there, they team up with engineers to determine which part of the bone can be saved and which will need to be replaced. Once the implant is built, it can be sterilised and installed, though Popov stresses that “observing the tissue and bone ingrowth into the implant” will continue for some time after. Examine I4.0 more generally, meanwhile, and you get the sense that other projects are reliant on similarly intimate relationships. DePuy Synthes, for instance, is a major American orthopaedics company that recently invested €36m to promote collaboration. Elsewhere, international bodies like the European Advanced Manufacturing Support Centre, are encouraging academic partnerships across borders.


“Nowadays, in healthcare, the terms ‘Hospital 4.0’ and ‘Medicine 4.0’ are gaining popularity by highlighting a new era in medicine and healthcare-assisted spheres.”


Hacked off


Challenging as they may be to set up, these partnerships are clearly worthwhile. To take Popov as an example, he says that using 3D printing, and rapidly crafting personalised devices, can drastically reduce the lead time of surgery, especially important when fighting cancer and other malignant illnesses. There’s also money to be


56


saved. According to Popov, every extra hour spent in the operating theatre costs literally thousands of euros. But by preparing personalised devices in advance, doctors can get the procedure done much faster. It goes without saying, meanwhile, that I4.0 can also offer savings in the data department too. There aren’t detailed statistics on medical devices specifically, but work by PwC found that gathering information effectively, then using AI or machine learning to understand where manufacturing tweaks could be made, or else where humans could be cut from the production line, could ultimately save firms $421bn.


The risks of evolution


Between the advantages it can offer patients and manufacturers, it’s tempting to imagine that I4.0 is here to stay. But if he clearly has confidence in new technology, Popov is the first to concede that streamline manufacturing isn’t easy. In his own field, he notes that educating medical professionals about the potential of 3D printing is one area of difficulty, as is developing alloys that can safely be inserted into fragile human bodies. More broadly, many insiders worry about the cybersecurity dangers of integrating digitalisation into the manufacturing process. Think about it like this: to 3D print a personalised device, you need to plug patient details into a computer first. And the moment you do that, hackers become a worry. Nor is this merely a theoretical danger. According to work by Deloitte, to give but one example, the UK government found that almost half of businesses reported having cybersecurity breaches or attacks in the year to summer 2020, a situation that’s bound to get worse as digitalisation rises. Even so, Popov is ultimately confident about the potential of I4.0 over the longer term. “Nowadays, in healthcare, the terms ‘Hospital 4.0’ and ‘Medicine 4.0’ are gaining popularity by highlighting a new era in medicine and healthcare-assisted spheres,” he says. “Now, business strategy and administration need to be customer-oriented through new relationships provided by the Internet of Things. It is also noteworthy that AI, big data analytics and robotics will [be integrated into] the very fibre of everyday life, especially in safety-critical applications.” Popov is equally excited about specific developments in the medical manufacturing space. If 3D printing is already proving its worth, he’s similarly curious about microscopic sensors that could offer detailed information on internal organs, as well as digital tools that can help researchers understand the microstructures of new materials. It seems clear, at any rate, that I4.0 is finally coming of age. Given half a decade has passed since the term gained popularity, it’s probably about time. ●


Medical Device Developments / www.nsmedicaldevices.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170