Materials
could be sitting in your driveway! Other industries, such as flexible electronics, rechargeable batteries and more, may soon leverage graphene on a truly industrial scale.” But what about the medical field? “Even for simple medical research, much less novel materials, it takes an average of 17 years to reach clinical application and practice – and graphene research only began in earnest 18 years ago”, Tour says. “Medical application of new materials is extremely difficult and time consuming, and has been hampered by struggles of graphene production and quality”. Nevertheless, he’s confident that we will begin to see graphene being used to strengthen medical composites – like bone implants.
Future expectations
Sorensen also has hopes for the future of graphene in the medical field. He has been working with organic chemist, Dr Stefan Bossmann, to transform HydroGraph’s graphene into what they call “reactive graphene”. It’s a form of graphene oxide in which the surface of HydroGraph’s multi-layer graphene is oxidised, while the in-between layers maintain their graphene integrity. Bossman has collaborated with Hawkeye Medical, Sorensen explains, who have “put protease molecules onto the surface of our graphene. These molecules can detect cancer by a fluorescent technique. It’s not graphene, per se”, he says, “it’s the
reactive graphene that allows us to attach these biomarkers to the surface of the graphene […] And once you’ve got reactive things of an organic nature, then all of organic chemistry lies at your feet. The sky’s the limit.”
As for the future of graphene, Sorensen is looking to plastics. Using graphene, he says, “we will [be able to] augment plastics to make them even stronger. And, of course, lightweight plastics are half the density or less than aluminium. So why not have plastic airplanes someday?” Tour is also optimistic about graphene strengthening existing materials. “The use of graphene as a composite additive is amazing,” he says. “For example, adding 0.1g of our flash graphene to 1kg of cement can increase its strength by 35%. This can allow for the use of less cement, one of the single largest sources of greenhouse gases. We have also tested the use of flash graphene in plastic composites, epoxy and more, with great increases in strength.”. For now, the task remains to get high-quality graphene off the ground and out into the world at scale and HydroGraph’s Breure is confident this will happen in the next few years. “We’re really at the cusp of this changing,” she says. It’s an exciting brink to be on, and one that will undoubtedly have huge ramifications in the medical field, but just how huge, remains for the innovators to imagine. ●
Composite Metal Wire for Medical Devices
Combine two or more metals or alloys into a clad metal wire "system"
that acts as one.
Medical Device Developments /
www.nsmedicaldevices.com 125
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170