search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Materials


A chamber of graphene in Dr Sorenson’s lab after a planned explosion process has been carried out.


force the materials to turn into the graphene. Our materials do it all by themselves; the precursors bring their energy with them.” This means Sorensen’s approach is not only environmentally benign, but also economically viable on a large scale – all it requires are the right gases. “Right now,” Sorensen explains, “we use either acetylene or ethylene – these are industrially available gases – and oxygen, which is easy to obtain.” Sorensen and the team at HydroGraph (the company established to commercialise his detonation process) are well aware that they are not alone in their endeavour. As Kjirstin Breure, president of HydroGraph, explains: “We’re not the only company that has effectively solved standardised production – there are other companies who are producing very high quality and consistent graphene […] The industry at large is improving.”


potential. Although the material itself had been discovered, the question remained as to how it could be manufactured at scale, economically and with repeatable quality. But all that is about to change – or so Sorensen believes. “I came upon graphene, not as a graphene person. I was trying to do something else,” he explains. While studying the formation of fractal aggregates and trying to create an aerosol gel, he filled a chamber with acetylene and oxygen. “I detonated it with a spark plug and after the detonation, I had a cloud of smoke,” he recalls. “A couple of minutes later, when I opened the chamber […] we had a very dark, black, angel food cake – something that I call an aerosol gel. I was really quite pleased with that.”


An explosive discovery Serendipity was in the soot-stained air. When Sorensen and his team looked under the electron microscope, he realised that the soot was not in the typical little round balls of amorphous carbon – they were little flakes. Sorensen had created graphene – but he was reticent to get swept up in the hype that surrounded this novel material. He took a low-key approach, moving slowly to be sure that what he had produced was the genuine article. When the patent finally came through in 2016, it became clear that Sorensen had hit upon a remarkable process. “It’s simple”, he explains. “All you’ve got to do is put hydrocarbon gas and oxygen in a chamber and ignite it with a spark. And notice it’s exothermic, not endothermic. In every other process to make graphene, you have to add energy to your precursor materials, you have to cook them in some manner or another – either chemically or electronically, or whatever – to


124


One such company is Universal Matter Inc., who’s commercial method is based on the Flash Joule Heating (FJH) process discovered by Dr James Tour, professor of organic chemistry and nanotechnology at Rice University in Houston. “Graphene is generally made by pulling graphite sheets apart,” Tour explains, “which is energy intensive and damages the graphene sheets; or by building the graphene sheets one atom at a time, which makes high-quality graphene sheets but on a miniscule scale.


“So, the industry must sacrifice quality for quantity, and both methods are very expensive ($60,000– $200,000 per ton). Our method of Flash Joule Heating is able to produce very high-quality graphene sheets, in bulk quantities, synthesised within seconds.”


Quick as a flash Unlike Sorensen’s process, FJH is endothermic, operating on the highly efficient conversion of electric current directly into thermal energy when it passes through a resistor. Yet, as Tour notes, “unlike other methods for synthesising graphene, which require highly pure gases, graphite, large amounts of solvent, or very hot furnaces, our method uses no solvents, furnace or reactive gases.” Key advantages to this method, as Tour outlines, include: “scalability, ability to convert waste materials into graphene, high efficiency and low impacts”. What is more, Tour notes, “our method was determined to use 80–88% less energy, 93–97% less water and emits 80–85% less greenhouse gases to synthesise one kilogram of graphene, as compared to current graphene production methods.” Already, Tour says, “Universal Matter is scaling the FJH process to be able to produce tons of graphene per day.” In fact, as Tour explains, graphene is already being used at scale in some industries. “Ford Motor Company has included graphene in all of their late-model cars in the form of a polymer reinforcing agent – so, graphene


Medical Device Developments / www.nsmedicaldevices.com


Hydrograph


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170